关于OpenCV的那些事——利用RANSAC消除错误姿态

本文介绍如何使用RANSAC算法优化相机姿态估计,通过随机选取特征点对计算并选择最小重投影误差的姿态作为最佳姿态。

上一节《关于OpenCV的那些事——跟踪点选取方式和特征点跟踪恢复》讲了两种跟踪和恢复的方法,这一篇主要讲第一个优化,使用random sample consensus收敛相机姿态。下一篇讲使用最小二乘多项式平滑消除姿态抖动。

我们知道在计算相机姿态的时候,opencv中提供了两种函数:solvePnP, solvePnPRansac。 第二个函数即是利用ransac的思想计算更加精确的姿态。 鉴于之前章节《关于OpenCV的那些事——相机姿态更新》里讲到的相机姿态更新至少使用4组2D/3D点对,我们自己试着实现一下RANSAC。 思想是对于追踪的n个特征点对,我们先随机生成m个4组点对(m < Cn4(排列组合)),分别计算出m个姿态,然后对于每一个姿态计算重投影误差,小于一定阀值的记录下来,并更新最佳姿态(最小误差),最终返回这个最佳姿态。m也叫迭代次数。当然选择合适的m,既能节省时间,有能找到最佳姿态。重投影误差的阀值也需要做实验找到最合适的。

C++代码如下:

bool collinear_ornot(Point2f p1, Point2f p2, Point2f p3)   // 三点是否共线
{
	if (abs((p2.x - p1.x)*p3.y - (p2.y - p1.y)*p3.x - p1.y*p2.x + p1.x*p2.y) < 1e-5)
		return true;
	else
		return false;
}
void random_n_4p(vector<Point2f>& imgP)
{
	srand((unsigned)time(NULL));
	int n = imgP.size();           //n为追踪的特征点的个数
	for (int i = 0; i < ransac_1; i++)    // ransac_1为上文中的m迭代次数,本项目中取20
	{
		do
		{
			n_4[i][0] = rand() % n;
			do
			{
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值