混合A星的启发式函数和惩罚项分析与实验

文章讨论了启发式函数在混合A*搜索中的应用,比较了全向和非全向方法,并结合两者在不同场景下的效果。通过实验,提出结合两种启发函数的自适应策略,并探讨了惩罚项如前轮转角变化和频繁前进后退对路径长度和平滑性的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

启发式函数分析

启发函数有两种,一个是全向考虑障碍物,另一个是非全向不考虑障碍物。
全向考虑障碍物的启发式距离可用A星搜索求得邻居节点到终点的距离,但是由于混合A星每次扩展一个节点都需要调用A星搜索一次,这会累加扩展节点个A星搜索的时间,导致混合A星实时性变差。所以可以一次搜索得到整个地图的节点到终点的cost并存储在节点中,这样的话混合A星每次扩展节点只需要查询扩展节点到终点的距离即可,大大节省了搜索时间,属于空间换时间的策略。
非全向不考虑障碍物的启发距离可由RS曲线获得,可以在给定起始点位姿和终止点位姿之后直接计算连接两点位姿而且不考虑障碍物的RS曲线的长度并作为启发距离。
原始混合A星论文在不同的场景下试验了两种启发函数,如下图所示,
image.png
从图(a), (b)可以看出,在障碍物不太密集的场景下使用非全向不考虑障碍物的启发函数比用欧式距离做启发函数少扩展了很多节点,因为欧式距离没有考虑车的非全向运动学,所以这个启发不太准。
从图©,(d)可以看出,在障碍物有死胡同的场景下,左图使用非全向不考虑障碍物的启发函数比右图全向考虑障碍物多扩展很多节点,因为非全向不考虑障碍物直接就把车往胡同里引导,到里边才发现是个死胡同,而全向考虑障碍物因为考虑了障碍物,死胡同里边节点里终点的距离很大,所以提前知道了那是个死胡同就不往里进了。
综上,论文采用结合两种启发函数的方法,取二者最大值,这时在障碍物稀疏情况下就会用非全向不考虑障碍物,有死胡同就会用全向考虑障碍物,也算一个小自适应。

下面用自己写的程序对上面两种启发函数进行复现,
1 带死角的场景用非全向不考虑障碍物启发函数
image.png
2 带死角的场景用全向考虑障碍物启发函数
image.png
就这种带死角的差别最明显,其他的看不出什么太大差别。
最后李柏老师的书上有个工程经验,进这种狭窄的空间可以把起点和终点互换,搜索出去比搜索进去简单一些,效果图如下,
image.png

惩罚项实验

1 前向后向惩罚
对前向惩罚应该用不太到,毕竟车多数往前开,如果用到倒车的话后向也不太用吧。
没加惩罚前,目标在前边,还向后搜索了
image.png
现在增加一个后向的权重,向后搜索少了
image.png
2 前轮转角变化惩罚
这个能让当前节点的前轮转角和下一个节点的前轮转角变化减小
如下图所示,没加惩罚前急了拐弯的,
image.png
加前轮打角变化惩罚后,
image.png
image.png
image.png

看下面这两幅图,第一个前轮打角变化没加惩罚,第二个加上了,可以分析出加不加这个惩罚是对路径长度和平滑性的权衡。
image.png
image.png
还有前轮打角的惩罚,这个是不希望前轮转角老打死啥的。
还有频繁前进后退的惩罚,加上这个就会减少前进后退,这个我实验中出现较少,展示不了了。

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值