(15-2)基于模型的强化学习:模型预测控制

15.2  模型预测控制

模型预测控制(Model Predictive Control,MPC)是一种用于控制系统的先进控制方法。它是一种基于模型的控制策略,可以用于许多不同的应用,包括工业过程控制、自动驾驶、机器人控制以及强化学习中的一些方法。

15.2.1  模型预测控制介绍

MPC 的核心思想是使用系统的动态模型来预测未来的系统行为,并根据这些预测来选择当前时刻的控制输入,以最大化或最小化某种性能指标。下面是实现MPC 的基本流程:

(1)建模:首先,需要建立被控制系统的数学模型,这个模型通常是一个描述系统动态行为的差分方程或状态空间表示。这个模型包括状态变量、控制输入和输出,以及描述系统响应的方程。

(2)预测:在每个时刻,MPC 使用系统模型来进行未来状态的预测。通过对当前状态应用模型的动态方程,可以预测系统在未来若干个时间步骤内的演化。

(3)优化:MPC 使用一个性能指标(也称为成本函数)来衡量系统行为的好坏。根据预测的未来状态,MPC 通过求解一个优化问题来选择当前时刻的最佳控制输入,以最小化或最大化性能指标。这个优化问题通常是一个约束优化问题,其中包括对控制输入和状态变量的约束。

(4)应用:选择的最佳控制输入被应用于系统,从而影响系统的行为。然后,系统进入下一个时刻,重复上述步骤。

(5)迭代:MPC 是一种迭代控制方法。在每个时刻,它会更新当前控制输入并重新进行预测和优化。这允许系统在不断变化的条件下实现更好的控制。

MPC 具有以下特点和优势:

  1. 适用性广泛:MPC 可以应用于各种不同类型的系统,包括连续时间和离散时间系统,线性和非线性系统。
  2. 鲁棒性:MPC 具有鲁棒性,可以在面对系统不确定性和外部扰动时提供良好的控制性能。
  3. 多目标优化:MPC 可以轻松处理多个性能指标,使得它适用于多目标控制问题。
  4. 软约束:MPC 可以灵活地处理约束条件,使得它可以应对约束优化问题。

总之,模型预测控制是一种强大的控制策略,通过使用系统模型来预测未来行为并进行优化,它可以在许多实际控制问题中取得良好的性能。

15.2.2  模型预测控制实战

请看下面的实例,功能是使用MPC算法控制一个简单的连续系统,以使其达到目标状态。请注意,这只是一个基础例子,在实际应用中的问题可能更复杂,涉及更详细的模型、成本函数和约束。

实例15-1:使用MPC算法控制小车的移动(源码路径:daima\15\mpc.py

实例文件mpc.py的具体实现代码如下所示:

import numpy as np
import matplotlib.pyplot as plt

# 模拟物理模型
def simulate_car(x, u):
    # 物理模型:x' = x + u,其中x是位置,u是控制输入
    return x + u

# MPC 控制器
def mpc_control(initial_state, horizon, num_steps):
    # MPC 参数
    control_horizon = horizon  # 控制的时间范围
    num_simulations = num_steps  # 模拟的时间步数
    control_sequence = np.zeros(control_horizon)  # 初始化控制序列

    # MPC 主循环
    for t in range(num_simulations):
        # MPC 预测未来状态
        predicted_states = []
        current_state = initial_state
        for _ in range(control_horizon):
            # 预测未来状态,这里简单地使用当前状态和控制输入
            control_input = control_sequence[_]
            predicted_state = simulate_car(current_state, control_input)
            predicted_states.append(predicted_state)
            current_state = predicted_state

        # 计算成本函数,这里简单地使用最终状态与目标状态之间的距离作为成本
        final_state = predicted_states[-1]
        target_state = np.array([10.0])  # 设置目标状态
        cost = np.linalg.norm(final_state - target_state)

        # 优化控制序列,这里简单地选择控制输入为随机值
        control_sequence = np.random.uniform(-1.0, 1.0, control_horizon)

        # 打印当前成本
        print(f"Step {t}: Cost = {cost}")

    return control_sequence

# 设置初始状态
initial_state = np.array([0.0])

# 运行 MPC 控制器
horizon = 10  # MPC 控制的时间范围
num_steps = 20  # 模拟的时间步数
control_sequence = mpc_control(initial_state, horizon, num_steps)

# 打印最终控制序列
print("Final Control Sequence:")
print(control_sequence)

# 可视化控制效果
states = [initial_state]
current_state = initial_state
for control_input in control_sequence:
    current_state = simulate_car(current_state, control_input)
    states.append(current_state)

# 可视化结果
plt.figure()
plt.plot(range(len(states)), states, label='State')
plt.xlabel('Time Step')
plt.ylabel('Position')
plt.title('MPC Control of Car Position')
plt.legend()
plt.show()

上面的代码演示了模型预测控制(MPC)算法的基本功能,主要用于控制一个简单的物理系统,使其达到特定的目标状态。上述代码的实现流程如下:

  1. 物理模型建模:首先定义了一个简单的物理模型,该模型描述了一个小车的位置随时间的变化。模型基于控制输入来模拟小车的运动。
  2. MPC 控制器:实现了一个MPC控制器,用于控制小车的运动。控制器的主要步骤包括:
  3. 预测未来状态:使用当前状态和控制输入,预测未来一系列状态。
  4. 计算成本:根据预测的最终状态与目标状态之间的距离,计算成本。
  5. 优化控制序列:通过随机生成控制输入序列,尝试最小化成本,从而优化控制策略。
  6. 模拟运行:代码在模拟过程中,重复多个时间步骤,不断更新控制序列,并模拟小车的运动。
  7. 输出结果:代码打印了每个时间步骤的成本以及最终的控制序列。最终的控制序列包含了根据MPC优化得出的一系列控制输入值。
  8. 可视化结果:最后,代码通过Matplotlib库可视化了小车的位置随时间的变化,以展示MPC控制效果。

执行上述代码后会绘制一个可视化图,展示小车的位置随时间的变化,如图15-8所示。

图15-1  小车的位置变化

其中,X轴表示时间步骤,Y轴表示小车的位置。图15-1将显示小车从初始位置出发,根据MPC控制策略逐渐接近目标位置的过程。因为控制输入是根据随机值生成的,所以每次执行都可能得到不同的轨迹。但是,图表的形状应该显示小车逐渐接近目标位置,直到最终达到或接近目标位置。

注意:由于控制输入是随机生成的,因此每次运行代码都可能得到不同的控制序列和轨迹。

  • 11
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值