文章目录
CIS扩散暗电流
中性p型硅的平衡空穴浓度 p p 0 p_{p0} pp0近似等于受体浓度 N A N_A NA。同时,平衡电子浓度 n p 0 n_{p0} np0 (p型硅中的少数载流子)为:
n p 0 = n i 2 p p 0 = n i 2 N A (3.23) n_{p0} = \frac{n_i^2}{p_{p0}} = \frac{n_i^2}{N_A}\tag{3.23} np0=pp0ni2=NAni2(3.23)
可以小很多个数量级。在耗尽半导体中,自由载流子(电子和空穴)的浓度几乎为零,在耗尽区和无场区之间的边缘载流子浓度也是如此。在图3.6中结的p侧,任何到达这一边缘的电子都会被电场扫走,空穴被推回到无场区。在交叉路口的n侧,情况正好相反。
因此,少数载流子在结的无场区域外的扩散引起电流流动,称为扩散暗电流。它的密度由扩散系数和浓度梯度的乘积给出。对于x = 0处的电子电流(p侧的耗尽边):
J d i f f = q D n ∂ n p ∂ x (3.24) J_{diff} = qD_n\frac{\partial n_p}{\partial x}\tag{3.24} Jdiff=qDn∂x∂np(3.24)
对于n边的空穴也可以写成类似的表达式。只有在从耗尽沿大约一个扩散长度内产生的载流子才能使其走出中性半导体并产生扩散电流。
在p侧深处,远离耗尽边缘,电子浓度由(3.23)给出,而在耗尽边缘则为零。通过求解具有这两个边界条件的扩散方程,得到深度电子密度为[10]:
n p = n p 0 [ 1 − e x p ( − x L n ) ] (3.25) n_p = n_{p0}[1-exp(-\frac{x}{L_n})]\tag{3.25} np=np0[1−exp(−Lnx)](3.25)
将式(3.23)和式(3.25)在x = 0时代入式(3.24)为:
J d i f f = q D n n i 2 L n N A (3.26) J_{diff} = \frac{qD_nn_i^2}{L_nN_A}\tag{3.26} Jdiff=LnNAqDnni2(3.26)
使用扩散长度 L n = D n τ n L_n = \sqrt{D_nτ_n} Ln=Dnτn,代入得:
J d i f f = q n i 2 N A D n τ n (3.27) J_{diff} = \frac{qn_i^2}{N_A}\sqrt{\frac{D_n}{τ_n}}\tag{3.27} Jdiff=NAqni2τnDn(3.27)
经典公式(3.26)假设中性区比扩散长度长得多,因为在(3.25)中,只有在 x ≫ L n x \gg Ln x≫Ln的情况下,少数电子浓度才达到 n i 2 / N A n_i^2/N_A ni2/NA。我们在第一章中已经看到,扩散长度可以是数百微米,但在大多数装置中,中性区域要短得多。如果没有中性区,如完全耗尽的pn结,就不会有扩散电流。
短中性区 L f f L_{ff} Lff的平衡电子密度由下式给出:
n p 0 = n i 2 N A [ 1 − e x p ( − L f f L n ) ] (3.28) n_{p0} = \frac{n_i^2}{N_A}[1-exp(-\frac{L_{ff}}{L_n})]\tag{3.28} np0=NAni2[1−exp(−LnLff)](3.28)
可以比 n i 2 / N A n_i^2/N_A ni2/NA小得多。当 L f f ≪ L n L_{ff}≪L_n Lff≪Ln时,我们可以用 e x p ( x ) ≈ 1 + x exp(x)≈1+x exp(x)≈1+x在x→0时,扩散电流的表达式(3.26)为:
J d i f f = q D n n i 2 L f f L n 2 N A = q n i 2 L f f τ n N A (3.29) J_{diff} = \frac{qD_nn_i^2L_{ff}}{L_n^2N_A} = \frac{qn_i^2L_{ff}}{τ_nN_A}\tag{3.29} Jdiff=Ln2NAqDnni2Lff=τnNAqni2Lff(3.29)
用 τ p τ_p τp和 N D N_D ND可以写出暗电流的空穴分量的类似表达式。对于图3.6中的非对称n+p结 N D ≫ N A N_D\gg N_A ND≫NA,因此空穴扩散产生的暗电流可以完全忽略。
由于 n i ∝ T 3 / 2 e x p ( − E g 2 k T ) n_i \propto T^{3/2}exp(-\frac{E_g}{2kT}) ni∝T3/2exp(−2kTEg)和 τ n ∝ T − 1 / 2 τ_n \propto T^{-1/2} τn∝T−1/2,扩散暗电流的温度依赖性为:
J d i f f ∝ T 7 / 2 e x p ( − E g k T ) (3.30) J_{diff} \propto T^{7/2}exp(-\frac{E_g}{kT})\tag{3.30} Jdiff∝T7/2exp(−kTEg)(3.30)
与耗尽暗电流一样,温度依赖性主要由指数项而不是指数前项决定。一个重要的区别是,扩散暗电流的指数是 e x p ( − E g / k T ) exp(-E_g/kT) exp(−Eg/kT),而耗尽暗电流的指数是 e x p ( − E g / 2 k T ) exp(-E_g/2kT) exp(−Eg/2kT)。这表明扩散电流在较高温度下变得更加重要。
扩散暗电流也来源于p++衬底,通常掺杂到 1 0 19 c m − 3 10^{19} cm^{−3} 1019cm−3左右,厚度为数百微米。在如此高的掺杂浓度下,电子寿命受到俄歇复合的限制[12],低于 1 0 − 7 10^{−7} 10−7s。这将增加扩散暗电流,但电子迁移率也大大降低,扩散系数 D n = ( k T / q ) μ n D_n = (kT/q)μ_n Dn=(kT/q)μn也大大降低。受杂质离子散射的限制,当受体掺杂在 1 0 19 c m − 3 10^{19} cm^{−3} 1019cm−3以上时,电子迁移率仅达到 μ n = 100 c m 2 V − 1 s − 1 μ_n = 100 cm^2 V^{−1} s^{−1} μn=100cm2V−1s−1。将这些数字代入式(3.27)得到 J d i f f = 17 f A c m − 2 J_{diff} = 17 fA cm^{−2} Jdiff=17fAcm−2,与例3.4中计算的外延层扩散电流相当。
参考书目:
- CMOS image sensor,Konstantin D Stefanov,2022