Dubins路径规划方法处理速度约束下的机器人路径规划

什么是速度约束和Dubins方法

  1. 机器人的运动具有局限性,它的转向性能受到方向舵最大偏角的制约,因此其转向时的最小转向半径为R,转弯半径无法比R更小,在运动上就受到速度约束,传统的路径规划方法并没有考虑这一点。
  2. Dubins路径算法的原理是基于:“在运动方向已知和转向半径最小的情况下,从初始向量到终止向量的最短的路径是由直线和最小半径转向圆弧组成的。”
  3. 以往的相关文献也有采用Dubins方法的,但是大都是考虑单一的路径规划算法,应用于多智能体系统的很少。结合多之智能体系统的任务分配进行研究,考虑了多种情况下的任务分配和路径规划问题,该算法同时能够处理障碍物情况并实现负载均衡。

设计流程

工作区:工作区域
路径规划,几种Dubins路径:
在这里插入图片描述
∣ x a y a ∣ = ∣ a 2 b 2 ∣ + ∣ cos ⁡ ϕ − sin ⁡ φ sin ⁡ ϕ cos ⁡ ϕ ∣ ⋅ ∣ a 1 − a 2 b 1 − b 2 ∣ ⋅ R / O 1 O 2 \begin{aligned} \left| \begin{array}{l}{x_{a}} \\ {y_{a}}\end{array}\right|=\left| \begin{array}{c}{a_{2}} \\ {b_{2}}\end{array}\right|+\left| \begin{array}{cc}{\cos \phi} & {-\sin \varphi} \\ {\sin \phi} & {\cos \phi}\end{array}\right| \cdot & \left| \begin{array}{l}{a_{1}-a_{2}} \\ {b_{1}-b_{2}}\end{array}\right| \cdot R / O_{1} O_{2} \end{aligned} xaya=a2b2+cosϕsinϕsinφcosϕa1a2b1b2R/O1O2

仿真结果:

  1. 不考虑负载平衡
    无负载均衡
  2. 负载平衡
    负载均衡
    改进方向:不同速度下最小转向半径的变化。

程序代码:CSDN

Github

Paper: 运动学约束条件下多AUV任务分配算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LiXin_SHMTU

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值