什么是速度约束和Dubins方法
- 机器人的运动具有局限性,它的转向性能受到方向舵最大偏角的制约,因此其转向时的最小转向半径为R,转弯半径无法比R更小,在运动上就受到速度约束,传统的路径规划方法并没有考虑这一点。
- Dubins路径算法的原理是基于:“在运动方向已知和转向半径最小的情况下,从初始向量到终止向量的最短的路径是由直线和最小半径转向圆弧组成的。”
- 以往的相关文献也有采用Dubins方法的,但是大都是考虑单一的路径规划算法,应用于多智能体系统的很少。结合多之智能体系统的任务分配进行研究,考虑了多种情况下的任务分配和路径规划问题,该算法同时能够处理障碍物情况并实现负载均衡。
设计流程
工作区:
路径规划,几种Dubins路径:
∣ x a y a ∣ = ∣ a 2 b 2 ∣ + ∣ cos ϕ − sin φ sin ϕ cos ϕ ∣ ⋅ ∣ a 1 − a 2 b 1 − b 2 ∣ ⋅ R / O 1 O 2 \begin{aligned} \left| \begin{array}{l}{x_{a}} \\ {y_{a}}\end{array}\right|=\left| \begin{array}{c}{a_{2}} \\ {b_{2}}\end{array}\right|+\left| \begin{array}{cc}{\cos \phi} & {-\sin \varphi} \\ {\sin \phi} & {\cos \phi}\end{array}\right| \cdot & \left| \begin{array}{l}{a_{1}-a_{2}} \\ {b_{1}-b_{2}}\end{array}\right| \cdot R / O_{1} O_{2} \end{aligned} ∣∣∣∣xaya∣∣∣∣=∣∣∣∣a2b2∣∣∣∣+∣∣∣∣cosϕsinϕ−sinφcosϕ∣∣∣∣⋅∣∣∣∣a1−a2b1−b2∣∣∣∣⋅R/O1O2
仿真结果:
- 不考虑负载平衡
- 负载平衡
改进方向:不同速度下最小转向半径的变化。
…