量化投资中的特征工程

本文探讨了特征工程在量化投资中的关键作用,指出开发策略就是特征工程的过程。通过实例解释了如何从原始数据中提取、选择和构造特征,强调了特征工程对于量化交易策略盈利能力的影响。特征工程的好坏直接影响机器学习算法的性能,对于海量金融市场数据,有效的特征工程能帮助发现超额收益的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。感兴趣的朋友可以前往BigQuant人工智能量化投资平台进一步实践研究。


1.特征工程是什么?

有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。简单理解为:特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

特征工程在量化投资领域有非常适宜的土壤,首先金融市场拥有海量数据,数据比较规整;其次,金融市场量化研究员开发优异策略离不开专业背景知识、行业经验和数据处理技巧;最后,金融市场的投资收益、风险可以直接检验机器学习算法性能。

特征工程之所以重要是因为它直接决定了机器学习算法的性能,对于量化交易员策略开发也是如此,特征工程的相关工作将直接决定策略的盈利能力。

2.开发策略就是特征工程

特征工程是一项工程活动,和量化交易有什么关系呢?量化交易员开发策略的过程本质就是特征工程。我们以一个量化领域比较经典的双均线模型(也称金叉死叉模型)来解释,该模型的策略核心是当短期均线上穿长期均线时,形成金叉,买入股票,当短期均线下穿长期均线时,形成死叉,卖出股票。在金融市场上,双均线模型可以实现长期盈利,那么量化交易员开发双均线模型的择时策略为什么就是特征工程呢。我们不局限在双均线模型的交易规则这一个层面,而是上升到K线数据的另一个特征层面,对于每一根均线而言,我们可以计算一个短期移动平均值与长期均线移动平均值之差这个特征,定义如下:

f e a t u r e = M A s h o r t − M A l o n g feature =MA_{short}-MA_{long} feature=

### 量化投资中的特征提取方法 在量化投资中,特征提取是指从原始市场数据中识别出能够预测未来价格变动或其他金融事件的关键变量的过程。有效的特征提取对于构建高性能的交易模型至关重要。 #### 数据预处理 为了提高特征的质量,在正式进行特征提取之前,通常会对原始数据进行一系列预处理操作。这包括但不限于缺失值填充、异常检测与修正以及标准化/归一化等措施[^2]。 #### 统计学基础 传统上,许多经典的统计技术和指标被广泛应用于特征工程之中。例如移动平均线(MA)、相对强弱指数(RSI)、布林带(Bollinger Bands),这些都可以作为输入给机器学习算法的基础特征。这类简单却强大的工具能有效地捕捉时间序列内的趋势性和周期性变化规律[^1]。 #### 高级建模技术 随着计算资源的增长和技术的进步,越来越多复杂的数学模型也被引入到了这一过程中来: - **小波变换**:通过对不同频率成分分解原信号得到多尺度表示形式的小波系数作为新特征; - **主成分分析(PCA)** 和其他降维算法可以帮助减少冗余维度的同时保留最重要的信息; - **因子分析** 可以用来探索隐藏在大量观测背后的潜在结构或因果关系; - 对于非平稳的时间序列,则可能采用差分整合移动平均自回归(Differencing Integrated Moving Average AutoRegressive, ARIMA) 或者季节调整后的版本 SARIMAX 来生成稳定的特征向量[^3]。 #### 深度学习框架下的创新应用 近年来,深度神经网络特别是卷积神经网路(CNNs),循环神经网络(RNNs)及其变体如长短时记忆单元(LSTMs)逐渐成为热门的选择之一。它们擅长自动地从未标记的数据集中抽取深层次语义级别的表征,并且不需要太多先验知识指导即可完成端到端的学习任务。具体来说: - CNN适用于图像类问题但在某些特定场景下也可以作用于一维或多维数值型数组比如股价走势图; - LSTM特别适合处理具有长期依赖性的顺序型资料集像金融市场上的连续报价流; - 自编码器(Autoencoders)则提供了一种无监督的方式去压缩并重构输入空间进而提炼出紧凑而富有表达力的新颖特性描述子[^4]. ```python import numpy as np from sklearn.decomposition import PCA from keras.layers import Input, Dense from keras.models import Model # 假设我们有一个形状为 (n_samples, n_features) 的 NumPy 数组 X 表示我们的原始特征矩阵 X = ... # 使用PCA降低特征数量至两个主要方向 pca = PCA(n_components=2) principalComponents = pca.fit_transform(X) # 构造简单的自编码器架构用于进一步精炼特征 input_layer = Input(shape=(original_dim,)) encoded = Dense(encoding_dim, activation='relu')(input_layer) decoded = Dense(original_dim, activation='sigmoid')(encoded) autoencoder = Model(input_layer, decoded) encoder = Model(input_layer, encoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') autoencoder.fit(X_train, X_train, epochs=50, batch_size=256, shuffle=True, validation_data=(X_test, X_test)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值