Nat Commun | 单细胞视角下的肿瘤微环境:30种癌症的生态系统全景解析

 最近遇到了好几个老师在单细胞数据分析完成后,对某个基因在特定癌症类型或细胞类型中的表达感兴趣,希望可以快速直接从泛癌数据集中提取相关信息。例如想知道PDCD1在CD8+ T细胞中的表达情况,首先需要在公共数据集中筛选相关细胞类型和癌症类型,然后获取表达谱,最后各种绘图展示。这样做虽然可行,但是比较浪费时间,在收集泛癌数据中看到了24年的一篇文章,整合了490万个单细胞转录组数据,涵盖了30种癌症类型,构建了一个全面的肿瘤-正常生态系统图谱,同时也提供了处理后的数据下载,下载后简单处理后就能直接用,为客户快速验证基因表达、跨癌症类型比较、支持实验设计和假设验证等提供了很大的便利性。

图片

摘要

肿瘤微环境的复杂性在癌症治疗中带来了重大挑战。本文为了全面调查肿瘤 - 正常生态系统,整合分析了来自 1070 例肿瘤和 493 例正常样本的 490 万单细胞转录组,结合了全癌种 137 个空间转录组学、8887 个 TCGA 样本和 1261 个使用检查点抑制剂治疗的肿瘤样本。我们定义了组成肿瘤 - 正常生态系统的多种细胞状态,并鉴定了不同细胞类型和器官的标志性基因特征。我们的图谱刻画了由 AKR1C1 或 WNT5A 标记的炎症成纤维细胞在细胞间相互作用和空间共定位模式上的差异。共现分析揭示了包括三级淋巴结构 (TLS) 成分在内的干扰素富集社区状态,这些状态在肿瘤、邻近正常组织和健康正常组织之间表现出不同的重连线。通过我们的肺癌队列 (n=497) 验证了干扰素富集社区状态对免疫治疗的良好反应。空间转录组的解卷积区分了 TLS 富集和非富集细胞类型在免疫治疗有利成分中的作用。我们对肿瘤 - 正常生态系统的系统性解剖为理解肿瘤内外异质性提供了更深的见解。

研究亮点
  1. 大规模单细胞图谱构建
    研究团队整合了490万个单细胞转录组数据,涵盖了30种癌症类型,构建了一个全面的肿瘤-正常生态系统图谱。通过非负矩阵分解(NMF)和UMAP可视化技术,研究人员成功解析了不同细胞状态的空间分布和相互作用。

关键细胞状态与免疫治疗响应
研究发现,干扰素富集的细胞状态(如三级淋巴结构TLS)在免疫治疗中表现出显著的响应差异。特别是,TLS成分(如CCL19+成纤维细胞和LAMP3+树突状细胞)在免疫治疗有效的患者中显著富集,这为预测免疫治疗疗效提供了新的生物标志物。

肿瘤微环境的异质性
研究揭示了肿瘤微环境中炎症性成纤维细胞的异质性,例如AKR1C1+和WNT5A+成纤维细胞在器官分配、组织偏好和空间共定位模式上的显著差异。这些发现为靶向肿瘤微环境的治疗策略提供了新的思路。

跨癌症类型的通用标志基因
研究团队通过AND-gating算法,系统鉴定了肿瘤和正常组织中差异表达的标志基因。例如,CD8+ T细胞在肿瘤中普遍上调了免疫检查点基因(如PDCD1和LAG3),而在正常组织中则上调了IL7R等基因。这些标志基因的发现为癌症的精准治疗提供了潜在的靶点。

结果

1. 构建全癌种肿瘤 - 正常单细胞元图谱

为了生成肿瘤和正常生态系统的全面普查,我们选择了已发表的关于癌症、邻近正常和健康正常样本的 scRNA-seq 数据集,这些数据集未针对特定细胞类型进行富集。结果,构建了一个涵盖 30 种不同癌症类型的肿瘤 - 正常单细胞转录组图谱,共包含 104 个数据集(补充数据 1)。经过数据整理,这个元图谱涵盖了来自 999 名捐赠者的 1070 个肿瘤和 493 个正常样本的 490 万个细胞(图 1A)。乳腺癌(BRCA)是最丰富的癌症类型,其次是肺癌(LC)、头颈癌(HNSC)和肝细胞癌(HCC)。

图片

A. 本研究收集的 30 种癌症类型的 scRNA-seq 队列概述。 B. 肿瘤 - 正常单细胞转录组图谱和 NMF 处理的工作流程。 C. 用 UMAP 可视化部分肿瘤 - 正常单细胞图谱,以细胞类型着色。 D. 用 UMAP 可视化部分肿瘤 - 正常单细胞图谱,以器官来源着色。 E. NMF 模块的图形聚类示意图,带有自动化的汤效应检测算法及后续分析。

2. 识别肿瘤 - 正常生态系统的通用标志基因特征

为了系统地表征在肿瘤和正常组织中反复上调的标志基因,以及在不同器官组成的 TME 的主要细胞类型中反复上调的标志基因,我们实施了 AND- 门算法(参见方法)(补充图 S2A 和补充数据 4)。对于 CD8+ T 细胞,协同刺激分子(CD27)和免疫检查点或衰竭标记如 CXCL13、PDCD1、TIGIT、CTLA4、LAG3 和 TNFRSF9 在肿瘤中常见上调,而 IL7R、PTGER2 和 PTGER4 在正常组织中上调(图 2A,B)。值得注意的是,胰腺肿瘤组织的 CD8+ T 细胞未显示 PDCD1 和 LAG3 的上调,这可能解释了目前免疫检查点抑制剂在胰腺癌(PAAD)中不可适用性,而在其他癌症类型中适用 16。同样,肿瘤相关的 NK 细胞以 ZNF683 和 KRT81 为标志。肿瘤中的 Tregs 上调具有调节功能的基因如 RBPJ、CXCR3 和 ZBED2,而正常组织中的 Tregs 上调 CCR7 和 CXCR5,表明免疫细胞在肿瘤和正常组织中的机制不同 17(图 2A,B)。特别是,肿瘤浸润的巨噬细胞普遍表达免疫检查点(IL4I1)18、M2 极化相关基因(SPP1)5,19 和炎症基因(CCL7、ADAMDEC1 和 SLAMF9),而肿瘤中的树突状细胞则表现出 CCL19 和 LAMP3 的高表达,这与炎症和迁移功能有关(图 2A,B)。基因本体(GO)分析揭示,肿瘤浸润的巨噬细胞、树突状细胞和 CD8+ T 细胞中上调的基因富集在包括对病毒的防御反应、对 II 型干扰素的反应、炎症反应、淋巴细胞趋化和细胞因子介导的信号通路等相关功能和路径中(图 2C)。

图片

A. 各器官中肿瘤和正常生态系统的标志基因特征表征。细胞类型在热图顶部标注,仅展示在四种或更多癌症类型中上调的基因。热图中的每个框代表 log2 倍数变化值,正值表示在肿瘤中上调。H&N,头颈;DC,树突状细胞;NK,自然杀伤细胞;Treg,调节性 T 细胞。

B. 图 2A 中在各癌症和细胞类型中识别的标志基因的详细热图。热图中的每种颜色代表 log2 倍数变化值,正值表示在肿瘤中上调。H&N,头颈;DC,树突状细胞;NK,自然杀伤细胞;Treg,调节性 T 细胞。

C. 使用 Enrichr 对不同细胞类型的肿瘤标志基因进行基因本体(GO)分析。点的颜色和大小分别表示来自双侧 Fisher 精确检验的赔率比和 p 值,经过 Benjamini-Hochberg 方法调整。PRR,模式识别受体。

3. 将肿瘤 - 正常生态系统解构为异质性细胞状态

对复杂的肿瘤和正常生态系统的系统性解剖,识别出大量与先前报告的特征高度一致的细胞状态或共调控基因,以及一些在之前的全癌种分析中尚未识别的基因(图 3A 和补充图 S3, 4)。对于髓系细胞状态,我们注意到 CTSK+ 巨噬细胞(SLC9B2 和 CTSK)、CXCL9+ 巨噬细胞(CXCL9 和 ENPP2)、朗格汉斯细胞(CD1A 和 CD207)、单核吞噬细胞(DLEU2 和 FMN1)和以趋化因子(CXCL1 和 CXCL5)、迁移(SLAMF1)和免疫调节标志(ITGB8)标记的 PRR 诱导的激活状态。SLAMF1 和 ITGB8 在 TLR 诱导的 DC 成熟过程中上调,因此被命名为 PRR 诱导的激活状态。我们还识别出各种 B 细胞状态,包括生发中心 B 细胞(GCB;SUGCT 和 RGS13)和浆细胞前体(FNDC3B 和 FNDC3A)状态(补充图 S3F)。利用 Ro/e 分析评估免疫细胞状态的组织富集情况,揭示了肿瘤中衰竭的 CD8+ T 细胞(LAG3 和 TOX)、SPP1+(SPP1 和 ANGPTL4)、CTSK+ 和 CXCL9+ 巨噬细胞状态的偏好(补充图 S5A, B)。GCB 和浆细胞状态在邻近正常组织中丰富,而 PRR 诱导的激活状态在健康正常组织中富集(补充图 S5B, C)。利用细胞类型特异性细胞状态谱作为嵌入参考,我们识别出反映相应细胞状态的细胞类型(图 3B 和补充图 S6, 7):PRR 诱导的激活状态被捕获为主要来源于妇科癌症(如卵巢癌(OV)和子宫内膜癌(UCEC))患者的 PRR 诱导的 mo-DC 细胞聚类,这与 PRR 诱导的激活状态评分的分布一致(补充图 S8)。

图片

UMAP 可视化 (A) 髓系细胞状态和 (B) 髓系细胞的相应参考组件分析。NMF 模块按细胞状态进行图形聚类和着色 (A)。然后,将细胞映射到由髓系细胞状态基因组成的参考组件 (B)。DC,树突状细胞;mono-derived MΦ,单核细胞来源的巨噬细胞;mo-DC,单核细胞来源的树突状细胞;pDC,浆细胞样树突状细胞;PRR,模式识别受体。UMAP 可视化 (C) 间充质细胞状态和 (D) 间充质细胞的相应参考组件分析。NMF 模块按细胞状态进行图形聚类和着色 (C)。然后,将细胞映射到由间充质细胞状态基因组成的参考组件 (D)。E 间充质细胞状态的组织富集 Ro/e 分析。虚线垂直线表示 Ro/e 为零的位置。F Circos 图展示正常(蓝色)和肿瘤(黄色)组织中细胞状态之间的共现。弧长代表与其他细胞状态在邻近区域的共现总和。弧长越长,表示与其他细胞状态的共现越频繁。Basal sq,基底鳞状状态。DC,树突状细胞;Tex,衰竭的 CD8+ T 细胞;T-exclusion,T 细胞排斥程序;Treg,调节性 T 细胞。

4. 表征 AKR1C1+ 和 WNT5A+ 炎症成纤维细胞作为不同亚型

成纤维细胞是具有多种功能的高度异质性群体,如胶原沉积、血管生成和细胞因子分泌,在形成 TME 中起着核心作用 33。在癌症背景下,成纤维细胞促进炎症并协调组织微环境向免疫抑制方向发展 34,但之前的全癌种研究中对炎症成纤维细胞的多样性尚未进行广泛探索 30,31。当我们将间质细胞集合投影到定义的状态时,我们识别出多种显示免疫相关基因表达的成纤维细胞亚型(图 4A)。其中,我们注意到表达 AKR1C1+ 和 WNT5A+ 的炎症成纤维细胞的区别,这两者都与 PRR 诱导的激活状态一致,并共享类似的细胞因子基因表达(CXCL1/3/8;图 4A 和补充图 S12A)。然而,它们在标志基因(AKR1C1、FOSL1、LIF 和 THAP2 vs. WNT5A、GREM1、TNC 和 MMP1)、组织来源(正常 vs. 肿瘤)和器官偏好上显著不同(图 3E,4A,B 和补充图 S12B,C)。为了研究这两种状态是否代表真正不同的成纤维细胞亚型,我们对涵盖乳腺、结肠、头颈和卵巢的肿瘤和正常组织的 scRNA-seq 数据集进行了详细检查。除乳腺组织外,肿瘤组织表达更多的趋化因子基因(CXCL1/3/8)。同时,这两种炎症成纤维细胞中 AKR1C1 和 WNT5A 的表达模式在不同器官中有所不同(图 4C)。BRCA 和 OV 患者表达 AKR1C1 和 WNT5A,而正常乳腺组织仅表达 AKR1C1。有趣的是,结直肠癌(CRC)和 HNSC 患者表达 WNT5A 但不表达 AKR1C1,而相应的正常组织则表现出相反的表达模式(图 4C)。

图片

A. 炎症成纤维细胞亚型的标志基因表达的点图。Inflamm.表示炎症。 B. 各器官中炎症成纤维细胞的分布,其中 y 轴表示肿瘤组织中炎症成纤维细胞的比例。H&N 表示头颈;Inflamm.表示炎症。 C. 点图显示相关器官的正常和肿瘤组织中 AKR1C1+ 和 WNT5A+ 炎症成纤维细胞标志基因的基因表达。H&N 表示头颈。 D. AKR1C1+ 和 WNT5A+ 炎症成纤维细胞与其他细胞类型的配体 - 受体相互作用。通过乘以每对细胞的配体和受体的标准化表达值来计算相互作用强度。DC 表示树突状细胞;Inflamm.表示炎症;ILC3 表示第 3 类固有淋巴细胞;mo-DC 表示单核细胞来源的树突状细胞;PRR 表示模式识别受体。 E. CRC(上)和 HNSC(下)组织中致密基质中原位 RNA smFISH 检测 WNT5A(红色)、PDGFRA(绿色)和 GREM1(黄色)的代表性图像(n = 3)。比例尺:100 μm。放大倍数:20X。 F. AKR1C1+ 炎症成纤维细胞与相关器官中其他细胞类型的空间共定位模式,颜色表示细胞丰度。 G. WNT5A+ 炎症成纤维细胞与相关器官中其他细胞类型的空间共定位模式,颜色表示细胞丰度。DC 表示树突状细胞;Inflamm.表示炎症;mo-DC 表示单核细胞来源的树突状细胞;PRR 表示模式识别受体。

下载数据

文章提供了数据和代码下载链接: https://zenodo.org/records/10651059

整合后的结果

图片

图片

各数据集单独结果

图片

图片

图片

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值