复数有限时间收敛ZNN(PC-CVZNN指数全局收敛(global convergence and super-exponential convergence)证明

1. 关于PC-CVZNN的全局收敛性证明

复数有限时间收敛ZNN模型定义:

\dot E(t) = -\mu(t)\Psi(E(t))

其中参数\mu(t)如下:

\mu(t)=\left\{ \begin{array}{ll} p \text{exp}(t),~~~~~~~~~0<p\leq1,\\ p^t+2pt+p,~~~p>1. \end{array} \right.

假设R(t)M(t)分别为E(t)的实部和虚部,即E(t)=R(t)+iM(t)。则根据PC-CVZNN模型的定义有如下关系:

\dot R(t)=-\mu(t)\Psi(R(t))

\dot M(t)=-\mu(t)\Psi(M(t))

定义李雅普诺夫函数

L(t)=||E(t)||^2_{\text{F}}/2=\text{Tr}(E^\text{H}(t)E(t))/2

对以上李雅普诺夫函数求导可得:

\dot L(t)=\frac{1}{2}\text{Tr}(\dot E^\text{H}(t)E(t)+E^\text{H}(t)\dot E(t))

   =-\frac{1}{2}\mu(t)\text{Tr}((\Psi(R(t))-i\Psi(M(t)))^\text{H}\times(R(t)+iM(t))+(R(t)-iM(t))^\text{H}(\Psi(R(t))+i\Psi(M(t))))

         =-\mu(t)\text{Tr}(R^\text{H}(t)\Psi(R(t))+M^\text{H}(t)\Psi(M(t)))

由于激活函数\Psi(\cdot)是单调递增奇的,因此有:

\text{Tr}(R^\text{H}(t)\Psi(R(t))+M^\text{H}(t)\Psi(M(t)))\ge 0

所以有L(t)>0\dot L(t)\leq 0,所以根据李雅普诺夫稳定性理论,误差函数E(t)全局收敛到0.

2. 关于PC-CVZNN的指数收敛速度

当激活函数\Psi(\cdot)为线性激活函数时,有:

\dot L(t)=-\mu(t)\text{Tr}(R^\text{H}(t)R(t)+M^\text{H}(t)M(t))

         =-\mu(t)||E(t)||^2_\text{F}=-2\mu(t)L(t).

考虑到一阶微分方程\dot y(t)+P(x)y=Q(x)的通解为:

y=e^{-\int P\text{d}x}[\int e^{\int P\text{d}x}Q(t)\text{d}x+C]

因此,根据时变参数\mu(t)的定义,并将一阶微分方程的通解应用于等式:

\dot L(t)=-2\mu(t)L(t)

可以得到:

L(t)=\text{exp}(-2\times\int^t_0\mu(\delta)\text{d}\delta)\times C=C\text{exp}(-2(p\text{exp}(t)-p))

由于L(t)t=0时的状态是已知的,因此不妨令C=L(0),所以有:

L(t)=L(0)\text{exp}(-2(p\text{exp}(t)-p)), ~~~ 0<p<1

同理可得:

L(t)=L(0)\text{exp}(-2(p^t/\text{ln}p+pt^2+pt-1/\text{ln}p))), ~~~p>1

花开两朵各表一枝,以0<p<1中的情况为例:

          L(t)=L(0)\text{exp}(-2(p\text{exp}(t)-p)), ~~~ 0<p<1

 \frac{1}{2}||E(t)||^2_\text{F}=\frac{1}{2}||E(0)||^2_\text{F}\times\text{exp}(-2(p\text{exp}(t)-p))

等式两边同时开平方可得:

    ||E(t)||_\text{F}=||E(0)||_\text{F}\times\text{exp}(-(p\text{exp}(t)-p))

||E(0)||_{\text{F}}=H,则有:

||E(t)||_{\text{F}}=H\text{exp}(-(p\text{exp}(t)-p))

同理可得当p>1时的情况:

||E(t)||_{\text{F}}=H\text{exp}(-(p^t/\text{ln}p+pt^2+pt-1/\text{ln}p))

因此,综上所述,PC-CVZNN模型是全局指数收敛的

补充关于矩阵的F范数有

||A||_F=\sqrt{tr(A^TA)}=\sqrt{\sum^m_{i=1}\sum^n_{j=1}a^2_{ij}}

参考文献:

L. Xiao, J. Tao, J. Dai, Y. Wang, L. Jia and Y. He, "A Parameter-Changing and Complex-Valued Zeroing Neural-Network for Finding Solution of Time-Varying Complex Linear Matrix Equations in Finite Time," in IEEE Transactions on Industrial Informatics, vol. 17, no. 10, pp. 6634-6643, Oct. 2021.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值