二阶系统欠阻尼状态极点位置对阶跃响应的影响

本文包含以下内容:
一、典型二阶系统传递函数介绍
二、极点位置变化对阶跃响应的影响

一、典型二阶系统传递函数介绍
典型二阶系统的传递函数如下:
  H ( s ) = ω n 2 s 2 + 2 ζ ∗ ω n ∗ s + ω n 2 \ H(s)= \frac{ωn^2 }{s^2 +2ζ*ωn*s+ωn^2}  H(s)=s2+2ζωns+ωn2ωn2
特征方程为:
  s 2 + 2 ζ ∗ ω n ∗ s + ω n 2 = 0 \ {s^2 +2ζ*ωn*s+ωn^2}=0  s2+2ζωns+ωn2=0
欠阻尼状态下的特征根为:
s 1 , 2 = − ζ ∗ ω n ± j w n ∗ 1 − ζ 2 ( 0 < ζ < 1 ) \mathop{{s}} \nolimits_{{1,2}} = {-ζ*ωn \pm j wn*\sqrt{1-ζ^2}}(0<ζ<1) s1,2=ζωn±jwn1ζ2 (0<ζ<1)

二、极点位置变化对阶跃响应的影响
动态特性指标与特征根的关系:
  t p = π ∣ I m ∣   σ = e π ∗ R e ∣ I m ∣   t s = 3.5 ∣ R e ∣ ( 包 络 线 正 负 百 分 5 ) \ tp = \frac {π}{|Im|}\\ \ σ = e^\frac {π*Re}{|Im|}\\ \ ts = \frac {3.5}{|Re|}(包络线正负百分5)  tp=Imπ σ=eImπRe ts=Re3.5线5

按如下值对极点进行移动:
在这里插入图片描述

用matlab绘制出三条响应曲线观察:
在这里插入图片描述
上移sys1的极点得到sys2,tp较小,超调量变大,稳定时间基本不变;
左移sys1的极点得到sys3,tp不变,超调量变小,稳定时间变短;
同时上移左移sys1极点但不改变‘相角’,tp变小,超调量不变,稳点时间变短;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值