本文是LLM系列文章,针对《Large Language Model Guided Knowledge Distillation for Time Series
Anomaly Detection》的翻译。
摘要
由于缺乏可用的注释,自监督方法在时间序列异常检测中获得了突出地位。然而,它们通常需要大量的训练数据来获取可推广的表示图,这与少数可用样本的场景相冲突,从而限制了它们的性能。为了克服这一限制,我们提出了AnomalyLLM,这是一种基于知识蒸馏的时间序列异常检测方法,其中训练学生网络以模仿在大规模数据集上预训练的基于大型语言模型(LLM)的教师网络的特征。在测试阶段,当教师和学生网络的特征之间的差异很大时,就会检测到异常。为了避免学生网络学习教师网络的异常样本特征,我们设计了两个关键策略。1) 原型信号被合并到学生网络中,以巩固正常的特征提取。2) 我们使用合成异常来扩大两个网络之间的表示差距。AnomalyLLM在15个数据集上展示了最先进的性能,在UCR数据集中至少提高了14.5%的准确性。