What matters when building vision-language models?

本文深入探讨了构建视觉语言模型的重要因素,通过广泛的实验研究预训练模型、架构、数据和训练方法。研究结果促成了Idefics2的开发,这是一个80亿参数的高效基础VLM,表现出色并具有高推理效率。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《What matters when building vision-language models?》的翻译。

摘要

大型语言模型和视觉transformer的改进推动了人们对视觉语言模型(VLM)日益增长的兴趣。尽管有大量关于这一主题的文献,但我们观察到,关于VLM设计的关键决策往往是不合理的。我们认为,这些未经支持的决策阻碍了该领域的进展,因为它们很难确定哪些选择可以提高模型性能。为了解决这个问题,我们围绕预训练的模型、架构选择、数据和训练方法进行了广泛的实验。我们对研究结果的整合包括Idefics2的开发,这是一种具有80亿个参数的高效基础VLM。Idefics2在各种多模态基准测试中实现了其大小类别中最先进的性能,并且通常与四倍于其大小的模型不相上下。我们发布了模型(基础、指导和聊天)以及为其训练创建的数据集。

1 引言

2 术语

3 探索视觉语言模型的设计空间

4 Idefics2-一个开放的最先进的视觉语言基础模型

5 结论

在这项工作中,我们重新审视了VLM文献中的常见选择,并在对照实验中严格比较了这些选择。我们的研究结果涉及不同架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值