【LDPC-8】非均匀量化LDPC译码性能的影响分析——以最小和译码算法为例进行matlab仿真

本文探讨了非均匀量化对LDPC码译码性能的影响,尤其关注最小和译码算法。通过采用两阶段非线性优化的q:1位非均匀量化器,降低量化误差。仿真结果展示,改进的非均匀量化器在误码性能上优于传统方案。在matlab中实现了这一算法并进行了误码率对比仿真分析。
摘要由CSDN通过智能技术生成

目录

1.本算法理论知识

2.matlab实现

3.误码率对比仿真分析


1.本算法理论知识

        在LDPC中,为了降低低密度奇偶校验码译码消息量化对其误码性能的影响,设 计 了 一 种q∶1位非均匀量化器。通过 两 级 非 线性优化降低 LDPC码译码迭代消息的量化误差。优选增长率较小的q位非均匀量化参数,对小信号进行量化处理;增加 一位与消息进化速度相匹配的非均匀量化参数,扩大量化器对大信号的适用范围。仿真结果表明,该非均匀量化器的误码 性能优于其他传统的非均匀量化器。

      鉴于此,设计了一种q:1位非均匀量化器。该量化器采用2种不同的非线性量化器匹配LDPC码译码消息。当译码消息幅度较小时,使用增长率较小 的q位非均匀量化;当译码消息幅度较大时,以q位 非均匀量化的边界值作为量化步长,增加一位增长率 较大的非均匀量化来扩大消息的动态范围。

LDPC(Low-Density Parity-Check)码是一种用于纠正通信过程中出现的错误的编码算法。而LDPC最小译码算法则是对LDPC进行误差的检测和修正的算法LDPC最小译码算法(Min-Sum Algorithm)是一种基于和最小原则的译码方法。该算法通过在LDPC码的校验节点和变量节点之间反复传递消息来实现译码的过程。具体的算法步骤如下: 1. 初始化:将所有的校验节点消息初始化为0。 2. 变量节点向校验节点传递消息:对于每个变量节点,根据从其他校验节点接收到的消息计算更新后的消息,并将其传递给相应的校验节点。 3. 校验节点向变量节点传递消息:对于每个校验节点,结合从其他变量节点接收到的消息计算更新后的消息,并将其传递给相应的变量节点。 4. 迭代传递消息:重复进行第2和第3步,直到满足停止条件。 5. 译码结果判定:根据最终计算得到的变量节点消息,判断每个变量节点对应的信号的取值,并输出相应的译码结果。 通过以上步骤,LDPC最小译码算法可以在迭代过程中逐渐逼近错误的位置,并通过相互之间的更新来逐渐修正错误,从而最终得到正确的译码结果。 在设计LDPC最小译码算法的硬件实现时,可以使用Verilog语言来描述译码器的数据流和控制逻辑,以及各个模块之间的连接关系。通过适当的模块划分和时序设计,可以有效地实现LDPC最小译码算法的硬件加速。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值