目录
1.软件版本
2.强化学习简介
强化学习(Reinforcement Learning,RL)是目前人工智能研究最多的领域之一,其通常被应用于解决各种决策方面的问题,因此通
本文介绍了强化学习的基础概念,包括梯度策略(PG)、信赖域策略优化(TRPO)和深度确定性策略梯度算法(DDPG)。并详细讲解了如何在Simulink中实现强化学习的建模,强调了Simulink RL Agent模块的使用,以及环境、智能体、奖励函数等关键要素的重要性。通过Simulink,可以无缝连接MATLAB,实现数据交换,构建强化学习控制系统。
目录
强化学习(Reinforcement Learning,RL)是目前人工智能研究最多的领域之一,其通常被应用于解决各种决策方面的问题,因此通

被折叠的 条评论
为什么被折叠?