常见信道模型简介与MATLAB仿真

目录

1.加性高斯白噪声信道 (AWGN Channel)

2.瑞利衰落信道(Rayleigh Fading Channel)

3.莱斯衰落信道 (Rician Fading Channel)

4.时变信道(Time-Varying Channel)

5.总结


1.加性高斯白噪声信道 (AWGN Channel)

       最基本的理想信道模型,仅存在加性高斯白噪声 (AWGN),无衰落或多径效应。噪声在所有频率上功率谱密度均匀,幅度服从高斯分布。

接收信号:r(t)=s(t)+n(t)

其中:

s(t)为发送信号,

n(t)∼N(0,σ2)是零均值高斯白噪声,双边功率谱密度为N0​/2。

MATLAB实现如下:

% AWGN信道仿真
clear all; close all; clc;

% 参数设置
SNR_dB = 15;                % 信噪比 (dB)
N = 10000;                  % 比特数
bits = randi([0 1], 1, N);  % 生成随机比特

% BPSK调制
symbols = 2*bits - 1;       % 0→-1, 1→+1

% 计算噪声功率
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(symbols).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power);

% 添加AWGN噪声
noise = noise_std * (randn(size(symbols))+sqrt(-1)*randn(size(symbols)));
received = symbols + noise;

 

% 绘制星座图
figure;
plot(real(received), imag(received), 'b.');
title('AWGN信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal

测试结果如下:

加性高斯白噪声 (AWGN)的特点如下:

1.无衰落(信号幅度恒定),仅受噪声影响。

2.信道参数(如增益)固定,不随时间变化。

3.数学上易分析,常作为基准模型与其他信道对比。

适用场景:有线通信(如光纤)、无线通信中信号直射路径占优且无多径干扰的场景(如视距传输)。
 

2.瑞利衰落信道(Rayleigh Fading Channel)

       多径传播且无直射路径(NLOS)时,接收信号幅度服从瑞利分布,相位均匀分布。适用于城市环境中移动台通信。

接收信号:r(t)=h(t)⋅s(t)+n(t)

其中:

h(t)=hI​(t)+jhQ​(t)是复信道增益,hI​,hQ​为独立同分布高斯随机变量,

幅度∣h(t)∣服从瑞利分布,相位∠h(t)均匀分布。

MATLAB实现如下:

% 瑞利衰落信道仿真
clear all; close all; clc;

% 参数设置
SNR_dB = 20;                % 信噪比 (dB)
N = 10000;                  % 符号数
fd = 100;                   % 多普勒频移 (Hz)
Ts = 1e-4;                  % 采样间隔 (s)

% 创建瑞利信道对象

channel = comm.RayleighChannel;
    channel.PathDelays = [0 1e-5]; % 分别为直射路径和反射路径
    channel.AveragePathGains = [0 -5]; % 直射路径较强,反射路径较弱
 

% 生成随机QPSK符号
bits = randi([0 3], 1, 2*N);
symbols = qammod(bits', 4);  % QPSK调制

% 通过瑞利信道
received_faded = channel(symbols);
received_faded2= (symbols);
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power/2);  % 复数噪声
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;
received2= received_faded2 + noise;
figure;
plot(real(received2), imag(received2), 'b.');
title('星座图');
xlabel('实部'); ylabel('虚部');
grid on;

 
figure;
plot(real(received), imag(received), 'b.');
title('瑞利衰落信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;

测试结果如下:

瑞利衰落信道的特点如下:

1.存在深度衰落(信号幅度随机起伏),平均功率决定衰落的严重程度。

2.信道参数(如衰落幅度)随时间随机变化,由散射体的运动或接收机移动引起。

3.若多径分量中无主导信号(如无直射径),则呈现瑞利衰落。

适用场景:城市密集建筑群中的无线通信(如蜂窝网络手机通信)、室内多径环境。
 

3.莱斯衰落信道(Rician Fading Channel)

       存在直射路径(LOS)和多径散射时,接收信号幅度服从莱斯分布。直射分量强度由莱斯因子K决定。

MATLAB实现如下:

% 莱斯衰落信道仿真
clear all; close all; clc;

% 参数设置
SNR_dB = 15;                % 信噪比 (dB)
N = 10000;                  % 符号数
fd = 100;                   % 多普勒频移 (Hz)
K_factor = 6;               % 莱斯因子 (dB)
K_linear = 10^(K_factor/10); % 线性莱斯因子

% 创建莱斯信道对象
chan = comm.RicianChannel; % 采样率1kHz
chan.PathDelays = [0 1e-3 3e-3];         % 多径时延
chan.AveragePathGains = [0 -5 -10];      % 路径增益 (dB)

% 生成随机16-QAM符号
bits = randi([0 3], 1, 2*N);
symbols = qammod(bits', 4);  % 4调制

% 通过莱斯信道
received_faded =chan( symbols);
received_faded2=symbols;
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power/2);  % 复数噪声
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;

received2 = received_faded2 + noise;
% 绘制莱斯分布和星座图
figure;
scatter(real(received2), imag(received2), 'b.');
title('星座图');
xlabel('实部'); ylabel('虚部');
grid on;

figure;
scatter(real(received), imag(received), 'b.');
title('莱斯衰落信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;

测试结果如下:

莱斯衰落信道的特点如下:

直射分量的存在使衰落程度减轻,莱斯因子K(直射功率与散射功率之比)衡量其强度。当K=0时退化为瑞利衰落。

信道具有时变性,散射分量的随机叠加仍会导致信号幅度波动,但整体衰落方差小于瑞利信道。

适用场景:郊区或乡村无线通信(存在部分直射路径)、卫星通信(如北斗信号传输)。

4.时变信道(Time-Varying Channel)

       信道特性随时间变化,通常由移动台运动或散射体变化引起。用多普勒频移描述时变特性。

MATLAB实现如下:


% 时变信道仿真
clear all; close all; clc;

% 参数设置
SNR_dB = 20;                % 信噪比 (dB)
N = 10000;                  % 符号数
v = 30;                     % 移动速度 (m/s)
fc = 2e9;                   % 载波频率 (Hz)
fs = 1e4;                   % 采样率 (Hz)
lambda = 3e8/fc;            % 波长 (m)
fd = v/lambda;              % 最大多普勒频移 (Hz)

% 生成随机BPSK符号
bits = randi([0 1], 1, N);
symbols = 2*bits - 1;

% 生成时变信道增益(Jakes模型)
t = (0:N-1)/fs;
L = 8;                      % 散射路径数
phi = 2*pi*rand(1, L);      % 随机相位
alpha = 1/sqrt(L);          % 路径增益归一化因子
h = zeros(1, N);

for k = 1:L
    theta = 2*pi*rand;      % 随机入射角度
    h = h + alpha * exp(1j*(2*pi*fd*cos(theta)*t + phi(k)));
end

% 通过时变信道
received_faded = h .* symbols;
received_faded2= symbols;
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power);
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;
received2= received_faded2+ noise;
 
figure;
plot(real(received2), imag(received2), 'b.');
title('AWGN信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal
figure;
plot(real(received), imag(received), 'b.');
title('时变信道');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal

测试结果如下:

时变信道特点如下:

变化原因:收发端相对运动(产生多普勒频移)、环境中散射体动态变化(如风速导致树叶摆动)。

快衰落信道:信道参数在符号周期内显著变化,需实时跟踪补偿(如高速移动的高铁通信)。

慢衰落信道:信道参数在多个符号周期内缓慢变化(如阴影效应导致的信号慢衰减)。

瑞利 / 莱斯衰落信道本质上属于时变信道的子集,强调多径衰落的统计特性;时变信道更侧重 “随时间变化” 的广义特征。

适用场景:所有动态无线通信场景(如移动电话、无人机通信)。

5.总结

以上介绍了通信中四类常见信道模型:

AWGN信道:最简单的理想信道,仅含高斯噪声。

瑞利衰落信道:适用于无直射路径的多径环境。

莱斯衰落信道:适用于存在直射路径的场景。

时变信道:考虑移动性引起的信道时变特性。

其整体的区别如下表所示:

维度AWGN 信道瑞利衰落信道莱斯衰落信道时变信道
直射路径无或固定无(NLOS)有(LOS + 散射)不一定
幅度分布高斯分布瑞利分布莱斯分布不一定(取决于场景)
时变性无时变有时变(多径引起)有时变(多径引起)核心特征是时变
衰落特性无衰落深衰落浅衰落(有 LOS)可能包含快 / 慢衰落
典型场景有线通信、视距无线密集多径环境含直射的多径环境所有移动场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值