目录
2.瑞利衰落信道(Rayleigh Fading Channel)
3.莱斯衰落信道 (Rician Fading Channel)
1.加性高斯白噪声信道 (AWGN Channel)
最基本的理想信道模型,仅存在加性高斯白噪声 (AWGN),无衰落或多径效应。噪声在所有频率上功率谱密度均匀,幅度服从高斯分布。
接收信号:r(t)=s(t)+n(t)
其中:
s(t)为发送信号,
n(t)∼N(0,σ2)是零均值高斯白噪声,双边功率谱密度为N0/2。
MATLAB实现如下:
% AWGN信道仿真
clear all; close all; clc;
% 参数设置
SNR_dB = 15; % 信噪比 (dB)
N = 10000; % 比特数
bits = randi([0 1], 1, N); % 生成随机比特
% BPSK调制
symbols = 2*bits - 1; % 0→-1, 1→+1
% 计算噪声功率
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(symbols).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power);
% 添加AWGN噪声
noise = noise_std * (randn(size(symbols))+sqrt(-1)*randn(size(symbols)));
received = symbols + noise;
% 绘制星座图
figure;
plot(real(received), imag(received), 'b.');
title('AWGN信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal
测试结果如下:
加性高斯白噪声 (AWGN)的特点如下:
1.无衰落(信号幅度恒定),仅受噪声影响。
2.信道参数(如增益)固定,不随时间变化。
3.数学上易分析,常作为基准模型与其他信道对比。
适用场景:有线通信(如光纤)、无线通信中信号直射路径占优且无多径干扰的场景(如视距传输)。
2.瑞利衰落信道(Rayleigh Fading Channel)
多径传播且无直射路径(NLOS)时,接收信号幅度服从瑞利分布,相位均匀分布。适用于城市环境中移动台通信。
接收信号:r(t)=h(t)⋅s(t)+n(t)
其中:
h(t)=hI(t)+jhQ(t)是复信道增益,hI,hQ为独立同分布高斯随机变量,
幅度∣h(t)∣服从瑞利分布,相位∠h(t)均匀分布。
MATLAB实现如下:
% 瑞利衰落信道仿真
clear all; close all; clc;
% 参数设置
SNR_dB = 20; % 信噪比 (dB)
N = 10000; % 符号数
fd = 100; % 多普勒频移 (Hz)
Ts = 1e-4; % 采样间隔 (s)
% 创建瑞利信道对象
channel = comm.RayleighChannel;
channel.PathDelays = [0 1e-5]; % 分别为直射路径和反射路径
channel.AveragePathGains = [0 -5]; % 直射路径较强,反射路径较弱
% 生成随机QPSK符号
bits = randi([0 3], 1, 2*N);
symbols = qammod(bits', 4); % QPSK调制
% 通过瑞利信道
received_faded = channel(symbols);
received_faded2= (symbols);
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power/2); % 复数噪声
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;
received2= received_faded2 + noise;
figure;
plot(real(received2), imag(received2), 'b.');
title('星座图');
xlabel('实部'); ylabel('虚部');
grid on;
figure;
plot(real(received), imag(received), 'b.');
title('瑞利衰落信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
测试结果如下:
瑞利衰落信道的特点如下:
1.存在深度衰落(信号幅度随机起伏),平均功率决定衰落的严重程度。
2.信道参数(如衰落幅度)随时间随机变化,由散射体的运动或接收机移动引起。
3.若多径分量中无主导信号(如无直射径),则呈现瑞利衰落。
适用场景:城市密集建筑群中的无线通信(如蜂窝网络手机通信)、室内多径环境。
3.莱斯衰落信道(Rician Fading Channel)
存在直射路径(LOS)和多径散射时,接收信号幅度服从莱斯分布。直射分量强度由莱斯因子K决定。
MATLAB实现如下:
% 莱斯衰落信道仿真
clear all; close all; clc;
% 参数设置
SNR_dB = 15; % 信噪比 (dB)
N = 10000; % 符号数
fd = 100; % 多普勒频移 (Hz)
K_factor = 6; % 莱斯因子 (dB)
K_linear = 10^(K_factor/10); % 线性莱斯因子
% 创建莱斯信道对象
chan = comm.RicianChannel; % 采样率1kHz
chan.PathDelays = [0 1e-3 3e-3]; % 多径时延
chan.AveragePathGains = [0 -5 -10]; % 路径增益 (dB)
% 生成随机16-QAM符号
bits = randi([0 3], 1, 2*N);
symbols = qammod(bits', 4); % 4调制
% 通过莱斯信道
received_faded =chan( symbols);
received_faded2=symbols;
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power/2); % 复数噪声
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;
received2 = received_faded2 + noise;
% 绘制莱斯分布和星座图
figure;
scatter(real(received2), imag(received2), 'b.');
title('星座图');
xlabel('实部'); ylabel('虚部');
grid on;
figure;
scatter(real(received), imag(received), 'b.');
title('莱斯衰落信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
测试结果如下:
莱斯衰落信道的特点如下:
直射分量的存在使衰落程度减轻,莱斯因子K(直射功率与散射功率之比)衡量其强度。当K=0时退化为瑞利衰落。
信道具有时变性,散射分量的随机叠加仍会导致信号幅度波动,但整体衰落方差小于瑞利信道。
适用场景:郊区或乡村无线通信(存在部分直射路径)、卫星通信(如北斗信号传输)。
4.时变信道(Time-Varying Channel)
信道特性随时间变化,通常由移动台运动或散射体变化引起。用多普勒频移描述时变特性。
MATLAB实现如下:
% 时变信道仿真
clear all; close all; clc;
% 参数设置
SNR_dB = 20; % 信噪比 (dB)
N = 10000; % 符号数
v = 30; % 移动速度 (m/s)
fc = 2e9; % 载波频率 (Hz)
fs = 1e4; % 采样率 (Hz)
lambda = 3e8/fc; % 波长 (m)
fd = v/lambda; % 最大多普勒频移 (Hz)
% 生成随机BPSK符号
bits = randi([0 1], 1, N);
symbols = 2*bits - 1;
% 生成时变信道增益(Jakes模型)
t = (0:N-1)/fs;
L = 8; % 散射路径数
phi = 2*pi*rand(1, L); % 随机相位
alpha = 1/sqrt(L); % 路径增益归一化因子
h = zeros(1, N);
for k = 1:L
theta = 2*pi*rand; % 随机入射角度
h = h + alpha * exp(1j*(2*pi*fd*cos(theta)*t + phi(k)));
end
% 通过时变信道
received_faded = h .* symbols;
received_faded2= symbols;
% 添加AWGN噪声
SNR_linear = 10^(SNR_dB/10);
symbol_power = mean(abs(received_faded).^2);
noise_power = symbol_power / SNR_linear;
noise_std = sqrt(noise_power);
noise = noise_std * (randn(size(received_faded)) + 1j*randn(size(received_faded)));
received = received_faded + noise;
received2= received_faded2+ noise;
figure;
plot(real(received2), imag(received2), 'b.');
title('AWGN信道星座图');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal
figure;
plot(real(received), imag(received), 'b.');
title('时变信道');
xlabel('实部'); ylabel('虚部');
grid on;
axis equal
测试结果如下:
时变信道特点如下:
变化原因:收发端相对运动(产生多普勒频移)、环境中散射体动态变化(如风速导致树叶摆动)。
快衰落信道:信道参数在符号周期内显著变化,需实时跟踪补偿(如高速移动的高铁通信)。
慢衰落信道:信道参数在多个符号周期内缓慢变化(如阴影效应导致的信号慢衰减)。
瑞利 / 莱斯衰落信道本质上属于时变信道的子集,强调多径衰落的统计特性;时变信道更侧重 “随时间变化” 的广义特征。
适用场景:所有动态无线通信场景(如移动电话、无人机通信)。
5.总结
以上介绍了通信中四类常见信道模型:
AWGN信道:最简单的理想信道,仅含高斯噪声。
瑞利衰落信道:适用于无直射路径的多径环境。
莱斯衰落信道:适用于存在直射路径的场景。
时变信道:考虑移动性引起的信道时变特性。
其整体的区别如下表所示:
维度 | AWGN 信道 | 瑞利衰落信道 | 莱斯衰落信道 | 时变信道 |
---|---|---|---|---|
直射路径 | 无或固定 | 无(NLOS) | 有(LOS + 散射) | 不一定 |
幅度分布 | 高斯分布 | 瑞利分布 | 莱斯分布 | 不一定(取决于场景) |
时变性 | 无时变 | 有时变(多径引起) | 有时变(多径引起) | 核心特征是时变 |
衰落特性 | 无衰落 | 深衰落 | 浅衰落(有 LOS) | 可能包含快 / 慢衰落 |
典型场景 | 有线通信、视距无线 | 密集多径环境 | 含直射的多径环境 | 所有移动场景 |