详解两阶段3D目标检测网络 Voxel R-CNN:Towards High Performance Voxel-based 3D Object Detection

在这里插入图片描述本文介绍一篇两阶段的3D目标检测网络:Voxel R-CNN,论文已收录于AAAI 2021。 这里重点是理解本文提出的 Voxel RoI pooling

论文链接为:https://arxiv.org/pdf/2012.15712.pdf

项目链接为:https://github.com/djiajunustc/Voxel-R-CNN


0. Abstract

这里先给出本文摘要

3D目标检测的最新进展在很大程度上取决于如何表示3D数据,即基于体素(voxel-based)基于点(point-based)的表示。 许多现有的高性能3D检测器都是基于点的表示,因为这种结构可以更好地保留点的精确位置。 尽管如此,由于点云的无序存储,往往会导致很高的计算开销。 相反,基于体素的结构更适合于特征提取,但由于输入数据被划分成网格,往往会产生较低的精度

在本文中,作者提出了一个稍微不同的观点,作者发现:对原始点的精确定位对于高性能的3D目标检测来说并不是必不可少的,粗体素粒度也可以达到很高的检测精度。 考虑到这一点,作者设计了一个简单但有效的基于体素的目标检测网络,即Voxel R-CNN。通过在两阶段方法中充分利用体素特征,最终获得了与最先进的基于点的模型(PV-RCNN)相当的检测精度,但计算开销减少了许多。Voxel R-CNN由3D主干网络、2D鸟瞰网RPN以及检测头组成。作者在本文中设计了一个voxel RoI pooling,可直接从体素特征中提取RoI特征,以便进一步处理。在KITTI数据集Waymo数据集上的实验结果表明,与现有的基于体素的方法相比,Voxel R-CNN在保持实时帧处理速率的同时(即在NVIDIA RTX 2080Ti GPU上以25FPS的速度)提供了更高的检测精度。


1. Introduction & Reflection on 3D Object Detection

( 本文的引言部分和第二部分对3D目标检测的思考部分这里就不详细介绍了,大家可以查看原文,我在这里大致总结下。)

首先是引言部分,现在的3D目标检测大致可以分为两类:基于体素(voxel-based)的检测方法有VoxelNet,SECOND,PointPillars基于原始点的(point-based)检测方法有STD,PointRCNN,3DSSD,PV-RCNN。从检测性能来看,基于点的检测精度更高,相应地计算效率还不是很快。随着检测算法的日益成熟,现在有一个新的问题出现了:我们是否能设计一个算法,既能达到基于点检测的高精度又能实现基于体素检测一样高的效率?

下面作者在文中回顾了SECONDPV-RCNN两类检测算法,可以看到SECONDPV-RCNN在检测精度上有着很大的差距。两个检测算法的主要差异在于:

  1. SECOND是一阶段检测算法,PV-RCNN是两阶段检测算法,PV-RCNN使用了检测头进行检测的进一步优化。
  2. PV-RCCN中的关键点保留了3D结构信息,而SECOND是在鸟瞰图(BEV)上进行检测。

从表1可以看出添加了检测头之后,SECOND的检测精度提升了0.6%,但是仍然远低于PV-RCNN,这表明两阶段检测能提高检测精度,但是鸟瞰图仍然不足以对3D物体进行准确表示。表2可以看出,PV-RCNN中作者提出了VSA模块,这是一个点-体素(point-voxel)特征交互操作,基本消耗了整个运行时间的一半,直接导致检测效率大幅下降。

简单总结下:

  1. 3D结构对于3D检测器来说至关重要,而鸟瞰图表示不足以精准预测bounding-box。
  2. point-voxel特征计算非常耗时,影响着检测效率,最终作者在本文提出了一个voxel-only的3D检测器。
在这里插入图片描述在这里插入图片描述

2. Voxel R-CNN Design (重点)

在这里插入图片描述
Voxel R-CNN是基于体素的用于3D目标检测的两阶段网络,网络结构图如上图所示。可以看出 Voxel R-CNN由三部分组成:

  • 3D骨干网络
  • 2D骨干网络(RPN)
  • Voxel RoI poolingDetect Head

Voxel R-CNN中,首先将原始点云划分为有规则的体素然后利用3D骨干网络进行特征提取。 然后将稀疏的3D体素转换为BEV表示形式在其上应用2D骨干网和RPN生成3D区域方案。 最后使用Voxel RoI Pooling提取RoI特征,将提取的特征输入Detect Head以进行进一步优化。下面详细讨论这些模块。由于本文的主要创新在于Voxel RoI pooling,因此首先对其进行介绍。


2.1 Voxel RoI pooling

Voxel Volumes as Points: 这里先给出了volumes的表示,由非空voxel中心坐标 { v i = ( x i , y i , z i ) } i = 1 N \left\{\boldsymbol{v}_{i}=\right.\left.\left(x_{i}, y_{i}, z_{i}\right)\right\}_{i=1}^{N} {vi=(xi,yi,zi)}i=1N和特征向量 { ϕ i } i = 1 N \left\{\phi_{i}\right\}_{i=1}^{N} {ϕi}i=1N组成。

Voxel Query: 如下图所示。在之前的最近邻voxel查找方法中,使用最多的是Ball Query,这里作者提出了Voxel Query,使用曼哈顿距离来进行查找,通过设置曼哈顿距离阈值来采样 K K K个voxels。

假设有两个voxels : α = ( i α , j α , k α ) \alpha=\left(i_{\alpha}, j_{\alpha}, k_{\alpha}\right) α=(iα,jα,kα) β = ( i β , j β , k β ) \beta=\left(i_{\beta}, j_{\beta}, k_{\beta}\right) β=(iβ,jβ,kβ),两个voxels之间的曼哈顿距离计算公式为:
D m ( α , β ) = ∣ i α − i β ∣ + ∣ j α − j β ∣ + ∣ k α − k β ∣ D_{m}(\alpha, \beta)=\left|i_{\alpha}-i_{\beta}\right|+\left|j_{\alpha}-j_{\beta}\right|+\left|k_{\alpha}-k_{\beta}\right| Dm(α,β)=iαiβ+jαjβ+kαkβ

假设有 N N N个非空voxels,使用Ball Query则时间复杂度为 O ( N ) O(N) O(N),使用voxel query时间复杂度则为 O ( K ) O(K) O(K),最近邻voxels查找效率上得到了有效改善。

在这里插入图片描述
Voxel RoI Pooling Layer: 首先将候选方案划分为 G × G × G G \times G \times G G×G×G个子体素(sub-voxels)。其中心点就是网格点,由于3D特征volumes是很稀疏的,非空voxels大约只占3%空间,不能直接对每个voxel使用最大池化操作。这里作者设计了一个PointNet模块,将近邻voxels特征融合到网格点,模块如下:
η i = max ⁡ k = 1 , 2 , ⋯   , K { Ψ ( [ v i k − g i ; ϕ i k ] ) } \boldsymbol{\eta}_{i}=\max _{k=1,2, \cdots, K}\left\{\Psi\left(\left[\boldsymbol{v}_{i}^{k}-\boldsymbol{g}_{i} ; \boldsymbol{\phi}_{i}^{k}\right]\right)\right\} ηi=k=1,2,,Kmax{Ψ([vikgi;ϕik])}

其中 v i k − g i v_i^k-g_i vikgi表示相对坐标, g i g_i gi是网格点坐标, ϕ i k \phi_{i}^{k} ϕik是voxel特征向量, Ψ \Psi Ψ表示多层感知机, η i \eta_{i} ηi是融合的特征向量。在具体实现上,作者在3D主干网最后两层提取了voxel特征,并且在每一层使用了两个不同的曼哈顿距离进行voxel融合,最后将这些不同层不同距离的voxel特征进行融合来获得RoI特征。

Accelerated Local Aggregation: 在这里作者还提出了一个加速PointNet模块。如下图所示,在图(a)中,假设有 M M M个网格点,每一个网格点需要查找 K K K个voxels,每个voxel特征向量为 C + 3 C+3 C+3,融合后的特征向量为 C ′ C^{\prime} C。则时间复杂度为 O ( M × K × ( C + 3 ) × C ′ ) O\left(M \times K \times(C+3) \times C^{\prime}\right) O(M×K×(C+3)×C)

在图(b)中,将voxel特征和相对坐标进行拆分,由于特征向量和网格点是相互独立的,我们对每个voxel进行特征变换,则此时间复杂的为 O ( N × C × C ′ ) O\left(N \times C \times C^{\prime}\right) O(N×C×C);进行voxel query后,我们对相应voxel进行位置特征转换,此时间复杂度为 O ( M × K × 3 × C ′ ) O\left(M \times K \times 3 \times C^{\prime}\right) O(M×K×3×C),最终时间复杂度为 O ( N × C × C ′ + M × K × 3 × C ′ ) O\left(N \times C \times C^{\prime} + M \times K \times 3 \times C^{\prime}\right) O(N×C×C+M×K×3×C),由于 M × K M \times K M×K高出 N N N一个数量级,所以其时间复杂度小于 O ( M × K × ( C + 3 ) × C ′ ) O\left(M \times K \times(C+3) \times C^{\prime}\right) O(M×K×(C+3)×C)
在这里插入图片描述


2.2 Training Objectives

( 本节的主干网和区域方案部分以及检测头这里就不详细介绍了,大家可以查看原文,这里对损失函数进行介绍。)

Losses of RPN: RPN损失函数为分类损失和回归损失,函数为:
L R P N = 1 N f g [ ∑ i L c l s ( p i a , c i ∗ ) + 1 ( c i ∗ ≥ 1 ) ∑ i L r e g ( δ i a , t i ∗ ) ] \mathcal{L}_{\mathrm{RPN}}=\frac{1}{N_{\mathrm{fg}}}\left[\sum_{i} \mathcal{L}_{\mathrm{cls}}\left(p_{i}^{a}, c_{i}^{*}\right)+\mathbb{1}\left(c_{i}^{*} \geq 1\right) \sum_{i} \mathcal{L}_{\mathrm{reg}}\left(\delta_{i}^{a}, t_{i}^{*}\right)\right] LRPN=Nfg1[iLcls(pia,ci)+1(ci1)iLreg(δia,ti)]

其中 N f g N_{fg} Nfg为前景anchors数量, p i a p_{i}^{a} pia δ i a \delta_{i}^{a} δia是分类和回归输出, c i ∗ c_{i}^{*} ci t i ∗ t_{i}^{*} ti是对应分类和回归目标。 1 ( c i ∗ ≥ 1 ) \mathbb{1}\left(c_{i}^{*} \geq 1\right) 1(ci1)表示只计算前景anchors的回归损失。分类损失函数为Focal Loss,回归损失函数为Huber Loss

Losses of detect head: 第二阶段置信度函数为:
l i ∗ ( I o U i ) = { 0 I o U i < θ L I o U i − θ L θ H − θ L θ L ≤ I o U i < θ H 1 I o U i > θ H l_{i}^{*}\left(\mathrm{IoU}_{i}\right)=\left\{\begin{array}{ll}0 & \mathrm{IoU}_{i}<\theta_{L} \\\frac{\mathrm{IoU}_{i}-\theta_{L}}{\theta_{H}-\theta_{L}} & \theta_{L} \leq \mathrm{IoU}_{i}<\theta_{H} \\1 & \mathrm{IoU}_{i}>\theta_{H}\end{array}\right. li(IoUi)=0θHθLIoUiθL1IoUi<θLθLIoUi<θHIoUi>θH

其中 I o U i \mathrm{IoU}_{i} IoUi是第 i i i个方案和对应真值框的 I o U \mathrm{IoU} IoU θ H \theta_H θH θ L \theta_L θL是前景 I o U \mathrm{IoU} IoU和背景 I o U \mathrm{IoU} IoU的阈值。置信度预测为二分类交叉熵函数,回归损失为Huber Loss,最终的损失函数为:
L head  = 1 N s [ ∑ i L cls  ( p i , l i ∗ ( IoU ⁡ i ) ) + 1 ( IoU ⁡ i ≥ θ reg  ) ∑ i L reg  ( δ i , t i ∗ ) ] \begin{aligned}\mathcal{L}_{\text {head }}=& \frac{1}{N_{s}}\left[\sum_{i} \mathcal{L}_{\text {cls }}\left(p_{i}, l_{i}^{*}\left(\operatorname{IoU}_{i}\right)\right)\right.\left.+\mathbb{1}\left(\operatorname{IoU}_{i} \geq \theta_{\text {reg }}\right) \sum_{i} \mathcal{L}_{\text {reg }}\left(\delta_{i}, t_{i}^{*}\right)\right]\end{aligned} Lhead =Ns1[iLcls (pi,li(IoUi))+1(IoUiθreg )iLreg (δi,ti)]

其中 N s N_s Ns是训练阶段的采样区域方案数量, 1 ( IoU ⁡ i ≥ θ r e g ) \mathbb{1}\left(\operatorname{IoU}_{i} \geq \theta_{r e g}\right) 1(IoUiθreg)表示只计算 I o U \mathrm{IoU} IoU大于 θ r e g \theta_{reg} θreg的区域方案。


3. Experiments

实验部分,作者分别在KITTIWaymo数据集上进行了验证,实验细节这里不介绍了,可以查看代码和论文,下面几张表是实验结果。

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

下表是Voxel R-CNN在KITTI数据集上的排名情况,在开源项目中目前暂列第一(截至2021-03-01)。
在这里插入图片描述
最后作者做了一些分析实验,对本分提出的voxel queryaccelerated PointNet进行了实验分析,下面对表格中的5种方法实验结果进行总结:

  • ( a )在BEV特征上进行一阶段检测,效率很快,但精度不高。
  • ( b )添加检测头,精度得到了提高,但使用了ball querry原始PointNet Module,效率下降很多。
  • ( c )使用voxel query,效率得到提高。
  • ( d )使用加速PointNet Module,效率进一步提高。
  • ( e )本文提出的 Voxel R-CNN,取得了最好的检测性能,同时也取得了voxel-based 方法中最快的检测效率。

在这里插入图片描述

  • 16
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值