汽车座椅舒适性评估中的体压分布与驾驶姿态优化研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)动态操纵下舒适驾驶姿态评估 本文从人体骨肌生物力学特性出发,以Hill肌肉力学模型为基础,构建了动态操纵下中国人体体征的5百分位、50百分位和95百分位体征驾驶员骨肌力学模型。通过搭建六自由度柔性试验台架,并运用中心复合方法完成试验次数的优化,结合骨肌力学特性、台架试验和仿真分析完成测试肌肉群的筛选。实测和动态操纵仿真的一致性和关联性分析,实现了舒适驾驶姿态区间硬点尺寸的测定,并通过实车试验验证了测试结果的合理性和适用性

(2)用户体验感客观量化 改变以静态试验为主的现状,进行实车动态操纵下的驾驶姿态舒适性测试,获得舒适性的主观感知和客观特征参量。建立驾驶姿态舒适性评估模型,经聚类分析完成专家意见偏离度的计算和数据筛选。提出主客观相结合的赋权新方法—AHP法限制熵权法,进行主观评价和舒适性客观参量间良好映射关系的建立,定量化分析用户驾乘体验感。最终测定肩部舒适性、背部舒适性、腰部舒适性、臀部舒适性和大腿部舒适性对整体舒适性影响的权重分别为0.056、0.346、0.308、0.193和0.096

(3)长短时驾驶过程中的舒适性差异和长时驾驶过程中的肌肉腰椎隐性损伤 从人体生物力学、驾驶员与座椅接触界面间的体压分布,以及长时驾驶导致的腰椎病理角度出发,提取生物电参数、体压特征参数等,研究长短时驾驶时的舒适性差异。结合腰椎间盘核磁共振图像和腰椎间盘受力,揭示长时驾驶对人体造成的隐性损伤机理。结果表明,随驾驶时长增加,大腿部和背部对舒适性的影响更大。体压分布对舒适性的影响最终反映在驾驶员与座椅接触界面间的平均压力和力度上,驾驶姿态下持续发力的大腿部、上肢和小腿部容易产生疲劳。此外,将核磁共振图像的测试结果以及舒适性的模拟仿真相结合,结果表明L4-5椎间盘处和L5-S1椎间盘处容易出现退行性病变,引发肌肉腰椎隐性损伤

(4)汽车座椅、踏板、方向盘等主要人机布置参数的优化设计 综合考虑驾驶员与座椅接触界面间的体压分布、生理信息等特征参数,运用正则化RBF神经网络,进行基于客观参量的舒适性预测模型的构建。将舒适性预测模型、人椅骨肌力学模型和体压分布相结合,全面分析满足舒适性的汽车座椅、踏板和方向盘等人机布置参数,进行不同体征驾驶员最优人机布置参数的研究。结果表明,正则化RBF神经网络预测结果的平均偏离度和Theil不等系数分别0.9141%和0.0071,具有较好的预测精度和拟合度。相比于BP神经网络,具有更高的预测精度。综合运用舒适性预测模型、人椅骨肌力学模型和体压分布,分析汽车座椅、踏板和方向盘等人机布置参数对驾驶姿态舒适性的影响,实现了不同体征驾驶员最优人机布置参数的优化设计

 

# 导入所需库
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import MinMaxScaler

# 假设已有体压分布和生理信息数据
pressure_data = np.array([...])  # 体压分布数据
physiological_data = np.array([...])  # 生理信息数据

# 数据预处理
scaler = MinMaxScaler()
pressure_scaled = scaler.fit_transform(pressure_data)
physiological_scaled = scaler.fit_transform(physiological_data)

# 合并数据
combined_data = np.hstack((pressure_scaled, physiological_scaled))

# 使用KMeans进行聚类分析
kmeans = KMeans(n_clusters=3, random_state=0).fit(combined_data)
labels = kmeans.labels_

# 计算轮廓系数
silhouette_avg = silhouette_score(combined_data, labels)
print("轮廓系数: ", silhouette_avg)

# AHR法限制熵权法计算权重
importance_weights = calculate_weight_AHP(combined_data, labels)

# 打印权重结果
print("权重结果: ", importance_weights)

# 定义AHP法限制熵权法计算权重函数
def calculate_weight_AHP(data, labels):
    # 此处省略具体计算权重的代码
    return weights

# 定义正则化RBF神经网络预测舒适性的函数
def predict_comfortability(rbf_network, input_data):
    # 此处省略具体预测舒适性的代码
    return comfortability_score

# 训练正则化RBF神经网络模型
rbf_network = train_rbf_network(combined_data, labels)

# 预测舒适性
comfortability_score = predict_comfortability(rbf_network, combined_data)
print("预测的舒适性得分: ", comfortability_score)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值