从某一点出发沿任意一方向旋转矩阵计算思考与实现

54 篇文章 7 订阅
39 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

上期讲到
绕任一向量旋转矩阵计算思考与实现
点击前往
点击前往

问题提出

之前讲到绕任一向量旋转矩阵实现,原来的向量都是从原点出发,现在把出发点改变成任意一点。

请添加图片描述

除了需要计算旋转矩阵,还可以支持2个旋转矩阵的乘法操作。就是2个旋转矩阵依次作用以后的一个综合结果。

问题分析

从某点出发沿某一方向旋转实现

从原点出发的旋转是已经实现的,我的思路是把坐标系统一平移一个(-x0, -y0,-z0),然后作用旋转矩阵,最后再平移回去。

用公式表示, RT1表示旋转矩阵,O1表示出发点。

P ′ = R T 1 ⋅ ( P − O 1 ) + O 1 ( 1 ) P' = RT1\cdot(P-O1)+O1 (1) P=RT1(PO1)+O11

既我们只要用一个旋转矩阵RT加一个出发点O就可以表示这个旋转动作。那么如果是2个旋转动作叠加怎么去用一个旋转动作来表示呢。

旋转相乘

有一种方法是用奇次矩阵来表示一个平移和旋转的组合,然后矩阵可以相乘,但是这种方式需要用到4*4的矩阵效率上没有3*3的矩阵来得高。

我这边通过公式推导得到一种新的表示方法。

首先对式子(1)进行展开再合并同类项得到

P ′ = R T 1 ⋅ P + ( I − R T 1 ) ⋅ O 1 P'=RT1\cdot P+(I-RT1)\cdot O1 P=RT1P+(IRT1)O1

( I − R T 1 ) ⋅ O 1 是一个常量, (I-RT1)\cdot O1 是一个常量, (IRT1)O1是一个常量,

即只要一个表示形如 R T ⋅ P + Q ( Q 是一个常量 ) 的形式, 即只要一个表示形如 RT\cdot P+Q(Q是一个常量)的形式, 即只要一个表示形如RTP+Q(Q是一个常量)的形式,

就可用一个矩阵加一个出发点的形式来表示。 就可用一个矩阵加一个出发点的形式来表示。 就可用一个矩阵加一个出发点的形式来表示。

出发点 O = ( I − R T ) − 1 Q 出发点O=(I-RT)^{-1}Q 出发点O=(IRT)1Q

现在有第二个旋转RT2,O2作用于P’ 得到

P ′ ′ = R T 2 ⋅ P ′ + ( I − R T 2 ) ⋅ O 2 P''=RT2\cdot P' + (I-RT2)\cdot O2 P′′=RT2P+(IRT2)O2

= R T 2 ⋅ R T 1 ⋅ P + R T 2 ⋅ ( I − R T 1 ) ⋅ O 1 + ( I − R T 2 ) ⋅ O 2 =RT2\cdot RT1 \cdot P + RT2\cdot (I-RT1)\cdot O1 + (I-RT2)\cdot O2 =RT2RT1P+RT2(IRT1)O1+(IRT2)O2

上式中 , R T = R T 2 ⋅ R T 1 上式中, RT = RT2\cdot RT1 上式中,RT=RT2RT1

O = ( I − R T ) − 1 ⋅ [ R T 2 ⋅ ( I − R T 1 ) ⋅ O 1 + ( I − R T 2 ) ⋅ O 2 ] O = (I-RT)^{-1}\cdot [RT2\cdot (I-RT1)\cdot O1 + (I-RT2)\cdot O2] O=(IRT)1[RT2(IRT1)O1+(IRT2)O2]

这样,我们就得了两个刚体变换的综合变换。

但是上面的方法有一个问题,当(I-RT)不可逆时,那么该公式失效。
我的理解是,当(I-RT)不可逆时,O并不是没有解,而是有很多个解。

那么我们要另选他法。

再观察(1)式,其实我们并不需要求出O,只要求出Q就可以了。

R T = R T 2 ⋅ R T 1 , Q = R T 2 ⋅ Q 1 + Q 2 RT = RT2\cdot RT1, Q=RT2\cdot Q_1 + Q_2 RT=RT2RT1,Q=RT2Q1+Q2

这个方法与奇次矩阵相比,计算量小很多。

代码实现


namespace acamcad {
    const double pi = acos(-1);
    using Point = Eigen::Vector3d;
    class RigidRTMatrix {
    private:
        Eigen::Matrix3d mat;
        Eigen::Vector3d trans;
        
    public:
        RigidRTMatrix(Point start, Point end, double theta) {
            cout << "generate RigidRTMatrix 2" << endl;
            Eigen::Vector3d v = end - start;
            cout << "v:" << v << endl;
            cout << "angle:" << theta << endl;
            assert(!v.isZero());
            // Point::Zero();
            v.normalize();
            Eigen::Vector3d X(1,0,0);
            Eigen::Vector3d m = v.cross(X);
            // todo m=0时特殊处理
            if (m.isZero()) {
                if (v.dot(X) > 0) m = { 0,1,0 }; // 直接等于Y轴
                else m = { 0,-1,0 }; // 等于Y轴的反轴
            }

            auto RY = GetRY(m);
            // 将v 旋转至ZOX 平面。
            auto vZOX = RY * v;
            auto RX = GetRX(vZOX);

            auto Xrotate = GetXRotate(theta);

            mat = RY.transpose() * RX.transpose() * Xrotate * RX * RY;
            cout << "mat create :" << mat << endl;

            trans = (Eigen::Matrix3d::Identity() - mat) * start; // 存储总体位移
        }
        
        RigidRTMatrix() {

        }
        
        // 给定YOX平面上的单位M向量,将其旋转到Y轴上。
        Eigen::Matrix3d GetRY(Eigen::Vector3d m) {
            assert(!m.isZero());
            m.normalize();
            Eigen::Matrix3d RY;
            RY.setIdentity();
            RY(1, 1) = m.y();
            RY(1, 2) = m.z();
            RY(2, 1) = -m.z();
            RY(2, 2) = m.y();
            return RY;
        }

        // 给定ZOX平面上的单位M向量,将其旋转到X轴上。
        Eigen::Matrix3d GetRX(Eigen::Vector3d m) {
            assert(!m.isZero());
            m.normalize();
            Eigen::Matrix3d RX;
            RX.setIdentity();
            RX(0, 0) = m.x();
            RX(0, 2) = m.z();
            RX(2, 0) = -m.z();
            RX(2, 2) = m.x();
            return RX;
        }

        // 给定ZOX平面上的单位M向量,将其旋转到X轴上。
        Eigen::Matrix3d GetXRotate(double theta) {
            double rad = theta / 180 * pi;
            Eigen::Matrix3d X;
            X.setIdentity();
            X(1, 1) = cos(rad);
            X(1, 2) = -sin(rad);
            X(2, 1) = sin(rad);
            X(2, 2) = cos(rad);
            return X;
        }

        double angleMod(double theta) {
            while (theta < -180)theta += 360;
            while (theta > 180)theta -= 360;
            return theta;
        }

        Point Trans(Point &a) {
            return mat * a + trans;
        }

        friend static RigidRTMatrix operator*(RigidRTMatrix& a, RigidRTMatrix& b) {
            RigidRTMatrix multi;
            multi.mat = a.mat * b.mat;
            multi.trans = a.mat * b.trans + a.trans;
            return multi;
        }
    };
}

代码测试


可以看出一个点依次作用与用一次综合矩阵的效果是一样的。


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。

欢迎添加我的公众号,进群交流。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值