正余弦定理公式



正弦余弦定理公式

锐角三角函数公式

   sin α=∠α的对边 / 斜边
  cos α=∠α的邻边 / 斜边
  tan α=∠α的对边 / ∠α的邻边
  cot α=∠α的邻边 / ∠α的对边
 
倍角公式

   Sin2A=2SinA•CosA
  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
  tan2A=(2tanA)/(1-tanA^2)
  (注:SinA^2 是sinA的平方 sin2(A) )
诱导公式

   sin(-α) = -sinα
  cos(-α) = cosα
  tan (—a)=-tanα
  sin(π/2-α) = cosα
  cos(π/2-α) = sinα
  sin(π/2+α) = cosα
  cos(π/2+α) = -sinα
  sin(π-α) = sinα
  cos(π-α) = -cosα
  sin(π+α) = -sinα
  cos(π+α) = -cosα
  tanA= sinA/cosA
  tan(π/2+α)=-cotα
  tan(π/2-α)=cotα
  tan(π-α)=-tanα
  tan(π+α)=tanα
  诱导公式记背诀窍:奇变偶不变,符号看象限
 
万能公式

   sinα=2tan(α/2)/〔1+tan^(α/2)〕
  cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕
  tanα=2tan(α/2)/〔1-tan^(α/2)〕

其它公式

   (1)(sinα)^2+(cosα)^2=1
  (2)1+(tanα)^2=(secα)^2
  (3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
  (4)对于任意非直角三角形,总有
  tanA+tanB+tanC=tanAtanBtanC

<think>嗯,用户想用Manim来展示余弦定理的动画演示。首先,我需要回忆一下Manim的基本用法,比如如何创建几何图形、添加文本和动画效果。余弦定理公式是$c^2 = a^2 + b^2 - 2ab\cos\gamma$,所以动画可能需要展示一个三角形,标记各边和角度,然后动态推导出公式。 首先,用户可能需要一个三角形ABC,其中角γ在C点。可能需要用箭头或标签来显示边长a、b、c,以及角γ的表示。然后,可能需要分解向量或者使用勾股定理来推导余弦定理,这部分可能需要逐步显示公式中的各个部分。 接下来,考虑如何用Manim实现这些元素。比如,使用Polygon类创建三角形,用Tex或MathTex来显示公式,用Create、Write等动画效果来逐步展示。可能需要使用Transform或者ReplacementTransform来转换不同的数学表达式,展示推导过程。 另外,用户可能对如何添加辅助线或分解向量感兴趣,比如从点C向AB边做高,形成两个直角三角形,从而应用勾股定理。这部分需要绘制垂线,并动态显示相关线段的长度。 还要注意颜色和标签的区分,让观众更容易跟随动画的步骤。比如,边a、b、c用不同颜色,角度γ用弧线标记,公式中的各部分用对应颜色高亮显示。 可能遇到的问题包括如何正确计算和定位辅助点的位置,以及如何同步文本和图形的动画。需要确保所有元素的坐标计算正确,避免动画中出现错位。此外,公式的排版可能需要调整,确保在Manim中正确显示LaTeX公式。 最后,用户可能需要相关的参考资料或示例代码,比如引用之前勾股定理的动画实现,或者提供完整的Manim脚本供用户参考和修改。需要检查代码中的类和方法是否正确,比如使用Scene类,正确使用self.play和self.wait来控制动画节奏。</think>### Manim实现余弦定理动画演示步骤 1. **基础三角形绘制** ```python class CosineTheorem(Scene): def construct(self): # 创建三角形顶点 A = LEFT * 2 B = RIGHT * 3 C = UP * 2 triangle = Polygon(A, B, C, color=WHITE) self.play(Create(triangle)) ``` 2. **添加边角标注** ```python # 标记边和角 a_label = MathTex("a").next_to(Line(B,C), RIGHT) b_label = MathTex("b").next_to(Line(A,C), LEFT) c_label = MathTex("c").next_to(Line(A,B), DOWN) # 添加角γ的弧线 angle = Angle(Line(B,C), Line(A,C), radius=0.5) gamma_label = MathTex(r"\gamma").next_to(angle, UR*0.3) self.play(Write(a_label), Write(b_label), Write(c_label)) self.play(Create(angle), Write(gamma_label)) ``` 3. **构建公式推导** ```python # 初始公式框架 formula = MathTex("c^2 = a^2 + b^2 - 2ab\\cos\\gamma") formula.to_edge(UP) # 分步显示公式 self.play(Write(formula[0][:3])) # 显示c² self.wait(1) self.play(Write(formula[0][3:8])) # 显示= a² + b² self.wait(1) self.play(Write(formula[0][8:])) # 显示-2abcosγ ``` 4. **添加辅助线分解(可选)** ```python # 绘制高度分解 projection = Line(C, [C[0], B[1], 0], color=YELLOW) h_label = MathTex("h").next_to(projection, LEFT) self.play(Create(projection), Write(h_label)) self.wait() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值