【大模型+知识图谱】大模型与知识图谱融合:技术演进、实践应用与未来挑战

大模型与知识图谱融合:技术演进、实践应用与未来挑战

引言:为什么需要融合?

在ChatGPT引爆通用人工智能的当下,大语言模型(LLM)的幻觉问题(如生成错误事实)和黑箱推理机制,成为阻碍其落地工业场景的关键瓶颈。而知识图谱(KG)作为符号化知识库,虽具备精准推理能力,却面临构建成本高动态更新难的困境。两者的互补性催生了“图模融合”新范式——大模型像人类的直觉脑,擅长语义理解与泛化;知识图谱则如逻辑脑,提供可解释的结构化推理路径。


一、技术融合的三重路径

1.1 知识图谱增强大模型

核心逻辑:将KG的结构化知识注入LLM训练/推理链路,解决“幻觉”痛点

  • 预训练融合:百度ERNIE 3.0将三元组转化为文本序列,通过掩码实体训练实现知识内化;KEPLER联合优化文本Embedding与图谱嵌入,统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识靠谱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值