李群与李代数-slam14讲笔记

文章目录

  • 前言
  • 群的定义
  • 李代数的引出
  • 李代数定义
    • 1.李代数so(3)
    • 2.李代数se(3)
  • 指数与对数映射

前言

最近在学习slam14讲,出现李群和李代数内容,希望通过笔记方式加深下理解。


在前一文,讲述了旋转矩阵和变换矩阵,同时我们也提到了特殊正交群SO(3),和特殊欧氏群SE(3)。数学公式可以写成这样:

 但是有一个问题,这两个矩阵都不封闭,换句话说任意两个旋转矩阵R_{1}R_{2},按照加法的定义他将不再是一个旋转矩阵,用数学公式可以表达为:

R_{1}+R_{2}\neq {SO(3)}, T_{1}+T_{2}\neq {SE(3)}

所以针对以上出现的问题我们由此引出了李群和李代数:

一、群的定义:

书上定义:群(Group)是一种集合加上一种运算的代数结构,以A表示集合,“·”表示运算,则群一般写作 G(A, ·)。现在估计也解释的很模糊,可以理解为就是一个矩阵的集合,为何有了矩阵还要弄个矩阵集合呢?因为矩阵它只是一个数,而像实际应用中我可能需要一系列数去描述某个事件的变化。而李群就是用来描述旋转平移上的变化,物体的旋转平移是连续的所以李群它也是随时间变化连续的。某个时刻下李群它是一个矩阵,但是一段时间内它是无数个矩阵的集合。综上群要求这个运算满足一下几个条件:

 二、李代数的引出:

因为旋转矩阵R是正交矩阵,所以满足:          RR^{T}=E.

然后引入时间变量t 变为时间的函数R ( t ) ,即有:   \boldsymbol{R}(t) \boldsymbol{R}(t)^{\mathrm{T}}=\boldsymbol{I}

两边对时间求导再整理得到:

\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{\mathrm{T}}+\boldsymbol{R}(t) \dot{\boldsymbol{R}}(t)^{\mathrm{T}}=0

 可以看出\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{\mathrm{T}}是一个反对称矩阵。之前我们引入\wedge符号,将一个向量变为反对称矩阵。同理对任意的反对称矩阵,我们都可以找到一个对应的向量,即:

 由此我们可以找到一个三维向量\phi(t) \in \mathbb{R}^{3}与之对应:

 等式两边乘以R(t),由于R为正交阵,有:

 由此我们每对旋转矩阵求导一次,只需左乘一个\boldsymbol{\phi}(t)^{\wedge}矩阵即可。

  三、李代数定义:

 李代数so(3)

之前提到的o,事实上是一种李代数。SO(3)对应的李代数是定义在R3上的向量,我们记作o。根据前面的推导,每个都可以生成一个反对称矩阵:

两个向量\phi_{1}, \phi_{2}李括号为:

李代数se(3)


 

 四指数与对数映射

1.SO(3)上的指数映射

现在我们计算\exp \left(\phi^{\wedge}\right),它是一个矩阵的指数,在李群李代数中称为指数映射。任意矩阵的指数映射可以写成一个泰勒展开,但是只有在收敛的情况下才会有结果,其结果仍是一个矩阵:

 同样的我们对于so(3)中的\phi(不要忘记这是三维向量),也可以定义他的它的指数映射:

这种矩阵的多次幂计算困难,我们可以换一种思路,由于\phi是三维向量,我们可以定义他的模长和方向分别定义他为\theta和a,于是\phi=\thetaa.定义a为长度为1的方向向量。此时对于a^{\wedge }有两条性质: 

 这两个式子给了我们处理a^{\wedge }高阶的方法,由此矩阵的指数形式就可以写成:

 化简出的结果和罗德里格斯公式如出一辙:

 这说明so(3)实际上就是旋转向量组成的空间,这样一来我们就可以把so(3)中的任意一个旋转向量映射到SO(3)的旋转矩阵中去,反之我们定义了对数映射,就能把SO(3)中的元素对应到so(3)中去。

2.SE(3)上的指数映射

se(3)上的指数映射形式为:

按照so(3)上的做法推导,将指数项进行泰勒展开推导此式。令\phi =\thetaa,其中a为单位向量,就有:

从结果上看,\xi的指数映射左上角的R是我们熟知的SO(3)中的元素,与se(3)中的旋转部分\phi对应。而右上角的J由上面的推导给出:

该式与罗德里格斯公式有些相似,但不完全一样。我们看到,平移部分经过指数映射之后,发生了一次以J为系数矩阵的线性变换。请读者重视这里的J,因为后面还要用到。
同样地,虽然我们也可以类比推得对数映射,不过根据变换矩阵T求so(3)上的对应向量也有更省事的方式:从左上角的R计算旋转向量,而右上角的t满足:

 由于J可以由得到,所以这里的p也可由此线性方程解得。由此我们就可以搞清楚李群和李代数的定义与相互的转换关系:

 

参考文献:

[1]https://blog.csdn.net/varyshare/article/details/91950065

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值