李群&李代数:SO3 与so3 & SE3与se3 & SIM3

  • 旋转矩阵<->角轴对应于李群<->李代数
  • R ˙ = ω ^ R \dot R =\hat ωR R˙=ω^R中的 ω \omega ω指的是角轴的速度,即单位旋转轴*角速率
    *Adjoint Map对应速度(线速度,角速度)之间的齐次映射

1 旋转*叉乘

1.1 旋转矩阵的导数

根据旋转矩阵的性质: R R T = I RR^T=I RRT=I,对两侧进行求导可得:
R ˙ R T = − R R ˙ T \dot{R} R^{\rm T}=-R\dot R^{\rm T} R˙RT=RR˙T
从而可知, R ˙ R T \dot R R^T R˙RT为一个反对称对阵,则存在向量 ω ω ω,使得 R R ˙ T = ω ^ R \dot R^T=\hat ω RR˙T=ω^

ω ^ = [ 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ] \hat \omega =\left[ \begin{array}{ccc} 0&-ω_z&ω_y\\ ω_z&0&-ω_x\\ -ω_y&ω_x&0 \end{array} \right] ω^= 0ωzωyωz0ωxωyωx0
即: R ˙ = ω ^ R \dot R =\hat ωR R˙=ω^R

1.2 物理意义

在这里插入图片描述
设空间一个点 S ( t ) S(t) S(t),其绕空间某个轴旋转,设其在t时刻的旋转轴为 ω ( t ) / ‖ ω ( t ) ‖ ω(t)/‖ω(t)‖ ω(t)/‖ω(t),其旋转角速度为 ‖ ω ‖ ‖ω‖ ω,则我们可知该点对应的线速率为:
S ˙ ( t ) = ω ( t ) × S ( t ) = ω ^ ( t ) ⋅ S ( t ) \dot S (t)=ω(t)×S(t)=\hat ω(t) \cdot S(t) S˙(t)=ω(t)×S(t)=ω^(t)S(t)
以此,我们便可理解旋转与轴角速率及叉乘之间的关系

1.3 实例

在这里插入图片描述
空间两个坐标系,W和B坐标系。W坐标系固定。
设B坐标系下有一点P与坐标系B固定,设其在B坐标系下坐标为: S B S_B SB(固定),其在W坐标系下坐标为: S W ( t ) S_W (t) SW(t),设:
S W ( t ) = R ( t ) ∗ S B + p ( t ) S_W (t)=R(t)*S_B+p(t) SW(t)=R(t)SB+p(t)
对其进行求导:
S ˙ W ( t ) = ω ^ ( t ) ⋅ R ( t ) ⋅ S B + p ˙ ( t ) = ω ^ ( t ) ⋅ ( S W ( t ) − p ( t ) ) + p ˙ ( t ) \dot S_W(t)=\hat ω(t)\cdot R(t)\cdot S_B+\dot p(t)=\hat ω(t)\cdot (S_W(t)-p(t))+\dot p(t) S˙W(t)=ω^(t)R(t)SB+p˙(t)=ω^(t)(SW(t)p(t))+p˙(t) = ω ^ ( t ) ⋅ S W ( t ) − ω ^ ( t ) ⋅ p ( t ) + p ˙ ( t ) =\hat ω(t)\cdot S_W(t)-\hat ω(t)\cdot p(t)+\dot p(t) =ω^(t)SW(t)ω^(t)p(t)+p˙(t)
从上式可以看出,

ω ω ω对应B坐标系在W坐标系下的旋转角速度, ω × S W ( t ) ω×S_W (t) ω×SW(t)即为由旋转引起的P点在W坐标系下的线速度。
− ω ^ ( t ) p ˙ ( t ) + p ^ ( t ) -\hat ω(t)\dot p(t)+\hat p (t) ω^(t)p˙(t)+p^(t)对应点P的线速度
注意: ω ω ω为W坐标系下的向量表示。

可进一步写成:
S ˙ W ( t ) = ω ^ ( t ) ⋅ S W ( t ) + v ( t ) \dot S_W (t)=\hatω(t)\cdot S_W(t)+v(t) S˙W(t)=ω^(t)SW(t)+v(t)
本实例:B坐标系起始与W重合,t时刻B坐标系以 ω ( t ) = [ 0 , 0 , ω ( t ) ] ω(t)=[0,0,ω(t)] ω(t)=[0,0,ω(t)]角速度进行旋转,即B坐标系绕z轴,以 ω ( t ) ω(t) ω(t)为角速度进行旋转。
设B坐标系的旋转角为 θ ( t ) θ(t) θ(t),即 θ ˙ ( t ) = ω ( t ) \dot θ(t)=ω(t) θ˙(t)=ω(t)
在这里插入图片描述

ω ˆ \omega \^{} ωˆ 在本文中与 ω ^ \hat \omega ω^同义

通过此实例,我们可以看出 ω ( t ) ω(t) ω(t)对应的旋转物理意义。

进一步我们了解到 ω ( t ) ω(t) ω(t)与则是角轴表示的角速度,从而了解角轴的叉乘几何特性。

1.4 角轴与反对称矩阵

每个轴的旋转均对应一个反对称矩阵,即将旋转同时分布在各个轴上,设如下一组:
G x = [ 0 0 0 0 0 − 1 0 1 0 ] , G y = [ 0 0 1 0 0 0 − 1 0 0 ] G z = [ 0 − 1 0 1 0 0 0 0 0 ] G_x =\left[ \begin{array}{ccc} 0&0&0\\0&0&-1\\0&1&0 \end{array} \right], G_y =\left[ \begin{array}{ccc} 0&0&1\\0&0&0\\-1&0&0 \end{array} \right] G_z =\left[ \begin{array}{ccc} 0&-1&0\\1&0&0\\0&0&0 \end{array} \right] Gx= 000001010 ,Gy= 001000100 Gz= 010100000

设角轴: θ = [ θ x , θ y , θ z ] T θ=[θ_x,θ_y,θ_z]^T θ=[θx,θy,θz]T
R = θ x G x + θ y G y + θ z G z R=θ_x G_x+θ_y G_y+θ_z G_z R=θxGx+θyGy+θzGz

Tips:
由此我们可以知道,角轴与欧拉角之间的小联系,当前两个旋转轴的旋转角度较小时,欧拉角 ≈ ≈ 轴角。

2 SO3 与so3

由于旋转矩阵与角轴之间的关系,对应了李群与李代数之间的关系,设计旋转矩阵对应的李代数为其对应的角轴。

2.1 so3 2 SO3

在我们知道: R ˙ = ω ^ R \dot R=\hatωR R˙=ω^R,便可知R可表达成e指数的形式:
R ( t ) = e x p ⁡ ( [ ∫ ω ( t ) ] ˆ ) = e x p ⁡ ( θ ^ ( t ) ) R(t)=exp⁡([∫ω(t)]\^{})=exp⁡(\hat θ(t)) R(t)=exp([ω(t)]ˆ)=exp(θ^(t))

即我们设计使得 R R R与角轴 θ θ θ对应。可知,由于三角函数的周期性,因此旋转矩阵到角轴是一对多的映射。由此可知,旋转矩阵对应李群SO3,而角轴表示对应李代数,其向量方向与旋转矩阵的切方向一致。
R = exp ⁡ ( θ ^ ) = ∑ n = 0 ∞ 1 n ! θ ^ n ↔ R=\exp\left(\hat{\theta}\right)=\sum_{n=0}^{\infty}\frac{1}{n!}\hat{\theta}^{n_{\leftrightarrow}} R=exp(θ^)=n=0n!1θ^n R = exp ⁡ ( θ ^ ) = I + ∑ n = 1 ∞ 1 n ! θ ^ n = I + ∑ n = 0 ∞ 1 ( 2 n + 1 ) ! θ ^ 2 n + 1 + ∑ n = 0 ∞ 1 ( 2 n + 2 ) ! θ ^ 2 n + 2 = I + ( ∑ n = 0 ∞ ( − 1 ) n ∥ θ ∥ 2 n ( 2 n + 1 ) ! ) θ ^ + ( ∑ n = 0 ∞ ( − 1 ) n ∥ θ ∥ 2 n ( 2 n + 2 ) ! ) θ ^ 2 = I + ( sin ⁡ ∥ θ ∥ ∥ θ ∥ ) θ ^ + ( 1 − cos ⁡ ∥ θ ∥ ∥ θ ∥ 2 ) θ ^ 2 = I 3 ∗ 3 + ( sin ⁡ ∥ θ ∥ ∥ θ ∥ ) θ ^ + ( 1 − cos ⁡ ∥ θ ∥ ∥ θ ∥ 2 ) ( − ∥ θ ∥ 2 I 3 ∗ 3 + θ θ T ) = c o s ∥ θ ∥ I 3 ∗ 3 + ( sin ⁡ ∥ θ ∥ ∥ θ ∥ ) θ ^ + ( 1 − c o s ∥ θ ∥ ∥ θ ∥ 2 ) θ θ T \begin{aligned} R&=\exp(\hat{\boldsymbol{\theta}})=I+\sum_{n=1}^\infty\frac1{n!}\hat{\boldsymbol{\theta}}^n=I+\sum_{n=0}^\infty\frac1{(2n+1)!}\hat{\boldsymbol{\theta}}^{2n+1}+\sum_{n=0}^\infty\frac1{(2n+2)!}\hat{\boldsymbol{\theta}}^{2n+2} \\ &=I+\left(\sum_{n=0}^\infty\frac{(-1)^n\|\theta\|^{2n}}{(2n+1)!}\right)\hat{\theta}+\left(\sum_{n=0}^\infty\frac{(-1)^n\|\theta\|^{2n}}{(2n+2)!}\right)\hat{\theta}^2 \\ &=I+\left(\frac{\sin\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right)\hat{\boldsymbol{\theta}}+\left(\frac{1-\cos\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^2}\right)\hat{\boldsymbol{\theta}}^2 \\ &=I_{3*3}+\left(\frac{\sin\lVert\boldsymbol{\theta}\rVert}{\lVert\boldsymbol{\theta}\rVert}\right)\widehat{\boldsymbol{\theta}}+\left(\frac{1-\cos\lVert\boldsymbol{\theta}\rVert}{\lVert\boldsymbol{\theta}\rVert^2}\right)\left(-\lVert\boldsymbol{\theta}\rVert^2I_{3*3}+\boldsymbol{\theta}\boldsymbol{\theta}^\mathbf{T}\right) \\ &=cos\|\boldsymbol{\theta}\|\boldsymbol{I}_{3*3}+\left(\frac{\sin\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right)\widehat{\boldsymbol{\theta}}+\left(\frac{1-cos\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^2}\right)\boldsymbol{\theta}\boldsymbol{\theta}^{\rm T} \end{aligned} R=exp(θ^)=I+n=1n!1θ^n=I+n=0(2n+1)!1θ^2n+1+n=0(2n+2)!1θ^2n+2=I+(n=0(2n+1)!(1)nθ2n)θ^+(n=0(2n+2)!(1)nθ2n)θ^2=I+(θsinθ)θ^+(θ21cosθ)θ^2=I33+(θsinθ)θ +(θ21cosθ)(θ2I33+θθT)=cosθI33+(θsinθ)θ +(θ21cosθ)θθT

2.2 SO3 2 so3

θ ^ = log ⁡ ( R ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n ( R − I ) n \hat{\theta}=\log(R)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}n(R-\mathbf{I})^n θ^=log(R)=n=1n(1)n1(RI)n

一对多的解算,其可以简化为旋转矩阵到角轴的计算:
在这里插入图片描述
在这里插入图片描述

3 SE3 与se3

设SE3的变换矩阵 T T T
T ( t ) = [ R ( t ) p ( t ) 0 1 ] T(t) =\left[ \begin{array}{ccc} R(t)&p(t)\\0&1 \end{array} \right] T(t)=[R(t)0p(t)1]

同样,我们构造 T ˙ = A T \dot T=AT T˙=AT的形式,从而使得 T = e x p ⁡ ( A ) T=exp⁡(A) T=exp(A)成立。
T ˙ ( t ) = [ R ˙ ( t ) p ˙ ( t ) 0 1 ] = [ ω ^ ( t ) R ( t ) p ˙ ( t ) 0 1 ] \dot T(t) =\left[ \begin{array}{ccc} \dot R(t)&\dot p(t)\\0&1 \end{array} \right] =\left[ \begin{array}{ccc} \hat ω(t)R(t)&\dot p(t)\\0&1 \end{array} \right] T˙(t)=[R˙(t)0p˙(t)1]=[ω^(t)R(t)0p˙(t)1]

T ˙ ( t ) T − 1 ( t ) = [ ω ^ ( t ) − ω ^ ( t ) ⋅ p ( t ) + p ˙ ( t ) 0 0 ] = A 4 ∗ 4 \dot T(t) T^{-1} (t) =\left[ \begin{array}{ccc} \hat ω(t)&-\hat ω(t) \cdot p(t)+\dot p(t)\\0&0 \end{array} \right]=A_{4*4} T˙(t)T1(t)=[ω^(t)0ω^(t)p(t)+p˙(t)0]=A44
对比1.3节的公式:
S ˙ W ( t ) = ω ^ ( t ) ⋅ S W ( t ) − ω ^ ( t ) ⋅ p ( t ) + p ˙ ( t ) = ω ^ ( t ) ⋅ S W ( t ) + v ( t ) \dot S_W (t)=\hat ω(t) \cdot S_W(t)-\hat ω(t)\cdot p(t)+\dot p(t)=\hat ω(t)\cdot S_W (t)+v(t) S˙W(t)=ω^(t)SW(t)ω^(t)p(t)+p˙(t)=ω^(t)SW(t)+v(t)

佐证:
ω ω ω对应B坐标系在W坐标系下的旋转角速度。
v ( t ) v(t) v(t)对应W坐标系下线速度。

3.1 se3 2 SE3:

se3 对应的 A A A阵为4*4的矩阵,加入偏移数据后,不再是一个反对称矩阵。我们设T阵对应的李代数为 ξ ξ ξ,其对应的李代数矩阵[ξ]表示为:
A = [ ξ ] = [ θ ^ ρ 0 0 ] A=[ξ]=\left[ \begin{array}{ccc} \hatθ&ρ\\0&0 \end{array} \right] A=[ξ]=[θ^0ρ0]

同样求e指数:
exp ⁡ ( A ) = ∑ n = 0 ∞ 1 n ! A n = [ ∑ n = 0 ∞ 1 n ! ( θ ^ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ ^ ) n ρ ] = [ exp ⁡ ( θ ^ ) J L ( θ ) ρ 0 1 ] J L ( θ ) = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ ^ ) n = I 3 × 3 + ( 1 − cos ⁡ ∥ θ ∥ ∥ θ ∥ 2 ) θ ^ + ( ∥ θ ∥ − sin ⁡ ∥ θ ∥ ∥ θ ∥ 3 ) θ ^ 2 \begin{aligned}\exp(A)&=\sum_{n=0}^\infty\frac1{n!}A^n=\left[\sum_{n=0}^\infty\frac1{n!}(\hat{\boldsymbol{\theta}})^n\sum_{n=0}^\infty\frac1{(n+1)!}(\widehat{\boldsymbol{\theta}})^n\rho\right]\\&=\begin{bmatrix}\exp(\widehat{\boldsymbol{\theta}})&J_L(\boldsymbol{\theta})\rho\\0&1\end{bmatrix}\\J_L(\boldsymbol{\theta})&=\sum_{n=0}^\infty\frac1{(n+1)!}(\widehat{\boldsymbol{\theta}})^n=I_{3\times3}+\left(\frac{1-\cos\lVert\theta\rVert}{\lVert\theta\rVert^2}\right) \widehat{\boldsymbol{\theta}}+\left(\frac{\lVert\boldsymbol{\theta}\rVert-\sin\lVert\boldsymbol{\theta}\rVert}{\lVert\boldsymbol{\theta}\rVert^3}\right)\widehat{\boldsymbol{\theta}}^2\end{aligned} exp(A)JL(θ)=n=0n!1An=[n=0n!1(θ^)nn=0(n+1)!1(θ )nρ]=[exp(θ )0JL(θ)ρ1]=n=0(n+1)!1(θ )n=I3×3+(θ21cosθ)θ +(θ3θsinθ)θ 2

note:
R ( θ ) = I 3 × 3 + θ ∧ J L ( θ ) R(\boldsymbol{\theta})=I_{3\times3}+\boldsymbol{\theta}^\wedge J_L(\boldsymbol{\theta}) R(θ)=I3×3+θJL(θ)

3.2 SE3 2 se3

在这里插入图片描述
其中: J L − 1 J_L^{-1} JL1可由以下公式得到:
J L − 1 = I 3 × 3 − 1 2 θ ^ + 1 − ∥ θ ∥ cos ⁡ ∥ θ / 2 ∥ 2 sin ⁡ ∥ θ / 2 ∥ ∗ ∥ θ ∥ 2 ∗ θ ^ 2 J_L^{-1}=I_{3\times3}-\frac12\widehat{\boldsymbol{\theta}}+\frac{1-\lVert\theta\rVert\cos\lVert\theta/2\rVert}{2\sin\lVert\theta/2\rVert*\lVert\theta\rVert^2}*\widehat{\boldsymbol{\theta}}^2 JL1=I3×321θ +2sinθ/2θ21θcosθ/2θ 2

此外,注意:不成立
在这里插入图片描述
一个常用性质:
在这里插入图片描述
https://natanaso.github.io/ece276a2019/ref/ECE276A_12_SE3.pdf
https://vnav.mit.edu/material/04-05-LieGroups-notes.pdf

4 SIM3 与sim3

SIM3与sim3之间的exp指数映射方式有多种:

  1. 第一种:
    https://qiita.com/shinsumicco/items/a2a00a3942caf2c88ecb
    [Trajectory Alignment and Evaluation in SLAM: Horn’s Method vs Alignment on the Manifold]

设一个sim3, δ δ δ,其对应的 A A A
A = [ δ ] = [ θ ^ + σ I 3 ∗ 3 ρ 0 3 T 0 ] A=[δ]=\left[\begin{array}{ccc} \hat θ+σI_{3*3}&ρ\\0_3^T&0 \end{array}\right] A=[δ]=[θ^+σI3303Tρ0]
e x p ⁡ ( A ) = e x p ⁡ ( [ δ ] ) = [ e x p ( σ ) e x p ⁡ ( θ ^ ) W ρ 0 1 ] exp⁡(A)=exp⁡([δ])=\left[\begin{array}{}exp(σ)exp⁡(\hat θ)&Wρ\\0&1\end{array}\right] exp(A)=exp([δ])=[exp(σ)exp(θ^)0Wρ1]
在这里插入图片描述

  1. 第二种:
    https://ethaneade.com/latex2html/lie/node29.html
    δ δ δ对应的A阵 A = [ δ ] = [ θ ^ ρ 0 − σ ] A=[δ]=\left[\begin{array}{}\hat θ&ρ\\0&-σ\end{array}\right] A=[δ]=[θ^0ρσ]

e x p ⁡ ( A ) = e x p ⁡ ( [ δ ] ) = [ e x p ⁡ ( θ ^ ) W ρ 0 e x p ⁡ ( − σ ) ) ] exp⁡(A)=exp⁡([δ])=\left[\begin{array}{}exp⁡(\hatθ)&Wρ\\0&exp⁡(-σ) )\end{array}\right] exp(A)=exp([δ])=[exp(θ^)0Wρexp(σ))]
具体W不给出,请与链接中查看

5 Adjoint repression & Map

https://dellaert.github.io/20S-8803MM/Readings/3D-Adjoints-note.pdf

Adjoint repression可以用于速度层面的直接线性映射。

根据上文:
S ˙ w ( t ) = ω ^ ( t ) ⋅ S W ( t ) + v ( t ) \dot S_w (t)=\hatω(t)\cdot S_W(t)+v(t) S˙w(t)=ω^(t)SW(t)+v(t)
写成齐次形式:
在这里插入图片描述
其中,
V w = [ ω ( t ) v ( t ) ] 6 ∗ 1 V_w=\left[\begin{array}{}ω(t)\\v(t) \end{array}\right]_{6*1} Vw=[ω(t)v(t)]61
根据 S W ( t ) = R ( t ) ⋅ S B + p ( t ) S_W(t)=R(t)\cdot S_B+p(t) SW(t)=R(t)SB+p(t)计算 P ˙ B \dot P_B P˙B P B P_B PB之间的映射
齐次:
在这里插入图片描述
代入 P ˙ W = V W P W \dot P_W=V_W P_W P˙W=VWPW得:
T B W P ˙ B = V W T B W P B ⟹ P ˙ B = ( T B W ) − 1 V ^ W T B W P B T_B^W \dot P_B=V_W T_B^W P_B⟹\dot P_B=(T_B^W)^{-1} \hat V_W T_B^W P_B TBWP˙B=VWTBWPBP˙B=(TBW)1V^WTBWPB
从而可知:
V ^ B = ( T B W ) − 1 V ^ W T B W = T W B V ^ W ( T W B ) − 1 \hat V_B=(T_B^W )^{-1} \hat V_W T_B^W=T_W^B \hat V_W(T_W^B )^{-1} V^B=(TBW)1V^WTBW=TWBV^W(TWB)1
以上便是Adjoint Map,可见Adjoint Map是将速度之间的映射
我们可以从 V ˙ B \dot V_B V˙B V ˙ W \dot V_W V˙W之间的关系中,找到 V W V_W VW V B V_B VB之间的映射。 V W V_W VW V B V_B VB为6维向量,而 V ^ B \hat V_B V^B V ^ W \hat V_W V^W为4*4的向量构成的方阵。
令:
在这里插入图片描述
根据叉乘的反交换律和在这里插入图片描述

可得:
在这里插入图片描述

从而根据:
在这里插入图片描述
可得:
在这里插入图片描述

从而引出伴随表示,使伴随表示也符合李群的性质。SE3为4*4的矩阵,而伴随矩阵为6*6的李群矩阵,
设伴随李代数:

令:
ξ = [ θ ρ ] , T ( ξ ) = [ R p 0 1 ] \boldsymbol{\xi}=\begin{bmatrix}\boldsymbol{\theta}\\\boldsymbol{\rho}\end{bmatrix}, T(\boldsymbol{\xi}) =\left[ \begin{array}{ccc} R&\boldsymbol{p}\\0&1 \end{array} \right] ξ=[θρ],T(ξ)=[R0p1]

对应A阵:
A = a d ( ξ ) = ξ ⋏ = [ θ ρ ] ⋏ = [ θ ∧ 0 ρ ∧ θ ∧ ] ∈ R 6 × 6 , ρ , θ ∈ R 3 . A=ad(\boldsymbol{\xi})=\boldsymbol{\xi}^\curlywedge=\begin{bmatrix}\boldsymbol{\theta}\\\boldsymbol{\rho}\end{bmatrix}^\curlywedge=\begin{bmatrix}\boldsymbol{\theta}^\wedge&\boldsymbol{0}\\\boldsymbol{\rho}^\wedge&\boldsymbol{\theta}^\wedge\end{bmatrix}\in\mathbb{R}^{6\times6},\quad\boldsymbol{\rho},\boldsymbol{\theta}\in\mathbb{R}^3. A=ad(ξ)=ξ=[θρ]=[θρ0θ]R6×6,ρ,θR3.
A d ( T ) = A d T = [ R 0 p ∧ R R ] = exp ⁡ ( a d ( ξ ) ) Ad(T)=Ad_{\rm T}=\left[ \begin{array}{ccc} R&0 \\\boldsymbol{p}^\wedge R&R \end{array} \right]=\exp(ad(\boldsymbol{\xi})) Ad(T)=AdT=[RpR0R]=exp(ad(ξ))

以上参考《State estimation for robotics》,为与上文保持一致,本文的伴随ad矩阵采取这样的结构,与书中有出入。

Sophus软件中李代数sim3结构排序是:先trans,后角度,最后scale,而本文中的说明均是角度在前,trans在后,因此与书中的伴随矩阵表示有出入。

证明: T T 0 T T = exp ⁡ ( a d T ⋅ ξ 0 ) TT_0T^{\rm T}=\exp(ad_T \cdot \bm{\xi}_0) TT0TT=exp(adTξ0)
T T 0 T 0 − 1 = [ R p 0 1 ] [ R 0 p 0 0 1 ] [ R 0 T − R T p 0 1 ] = [ R R 0 R P 0 + p 0 1 ] [ R 0 T − R T p 0 1 ] = [ R R 0 R T − R R 0 R T p + R p 0 + p 0 1 ] \begin{aligned}TT_0T_0^{-1}&=\left[\begin{matrix}R&p\\0&1\end{matrix}\right]\left[\begin{matrix}R_0&p_0\\0&1\end{matrix}\right]\left[\begin{matrix}R_0^T&-R^Tp\\0&1\end{matrix}\right]\\&=\left[\begin{matrix}RR_0&RP_0+p\\0&1\end{matrix}\right]\left[\begin{matrix}R_0^T&-R^Tp\\0&1\end{matrix}\right]\\&=\left[\begin{matrix}RR_0R^T&-RR_0R^Tp+Rp_0+p\\0&1\end{matrix}\right]\end{aligned} TT0T01=[R0p1][R00p01][R0T0RTp1]=[RR00RP0+p1][R0T0RTp1]=[RR0RT0RR0RTp+Rp0+p1]

a d T : [ R p × R 0 R ]         ξ 0 : [ θ 0 ρ 0 ] a d T = [ R p × R 0 12 ] [ θ 0 ρ 0 ] = [ R θ 0 p × R θ 0 + R ρ 0 ] exp ⁡ ( a d T ξ 0 ) = [ R R 0 R T J R θ 0 ( p × R θ 0 + R ρ 0 ) 0 1 ] \begin{aligned}\mathrm{ad_T}&:\quad\begin{bmatrix}R&p_\times R\\0&R\end{bmatrix}\ \ \ \ \ \ \ {\bm\xi_0}:\begin{bmatrix}\bm\theta_0\\\bm\rho_0\end{bmatrix}\\ \mathrm{ad_T}&=\begin{bmatrix}R&p_\times R\\0&12\end{bmatrix}\begin{bmatrix}\bm\theta_0\\\bm\rho_0\end{bmatrix}=\begin{bmatrix}R\theta_0\\p_\times R\theta_{0}+R\rho_{0}\end{bmatrix}\\ \exp\left(\mathrm{ad_T}\bm\xi_0\right)&=\begin{bmatrix}RR_0R^{T}&J_{R\bm{\theta}_0}(p_\times R\theta_{0}+R\rho_{0})\\0&1\end{bmatrix}\end{aligned} adTadTexp(adTξ0):[R0p×RR]       ξ0:[θ0ρ0]=[R0p×R12][θ0ρ0]=[Rθ0p×Rθ0+Rρ0]=[RR0RT0JRθ0(p×Rθ0+Rρ0)1]

即要证明: − R R 0 R T p + R p 0 + p = J R θ 0 ( p × R θ 0 + R ρ 0 ) -RR_0R^Tp+Rp_0+p=J_{R\bm{\theta}_0}(p_\times R\theta_{0}+R\rho_{0}) RR0RTp+Rp0+p=JRθ0(p×Rθ0+Rρ0)
首先:
J R θ = 1 ( n + 1 ) ! ∑ ( R θ ^ ) n = 1 ( n + 1 ) ! ∑ ( R θ ^ R ^ T ) n = 1 ( n + 1 ) ! R ( ∑ θ ^ n ) ⋅ R T J θ = 1 ( n + 1 ) ! ∑ θ ^ n ∴ J R θ = R ⋅ J 0 ⋅ R T \begin{aligned}J_{R\theta}=\frac{1}{(n+1)!}\sum\left(\widehat{R\theta}\right)^{n}&=\frac{1}{(n+1)!}\sum\left(R\widehat{\theta}\widehat{R}^{T}\right)^{n}=\frac{1}{(n+1)!}R\left(\sum\widehat{\theta}^{n}\right)\cdot R^{T}\\J_{\theta}=\frac{1}{(n+1)!}\sum\hat{\theta}^{n}\\ \therefore J_{R\theta}=R\cdot J_{0}\cdot R^{T}\end{aligned} J=(n+1)!1( )nJθ=(n+1)!1θ^nJ=RJ0RT=(n+1)!1(Rθ R T)n=(n+1)!1R(θ n)RT

以及:
R = I 3 × 3 + J θ ^ R=I_{3\times3}+J\bm{\hat\theta} R=I3×3+Jθ^ p = J ρ p=J\rho p=Jρ R θ ^ R T = R θ ^ R\hat\theta R^T=R\hat\theta Rθ^RT=Rθ^

因而:
− R R 0 R T p + R p 0 + p = − R ( 1 + J θ 0 θ ^ 0 ) R T p + R p 0 + p = − p − R J θ 0 θ ^ 0 R T p + R J θ 0 ρ 0 + p = − R J θ 0 θ ^ 0 R T p + R J θ 0 ρ 0 = − R J θ 0 θ ^ 0 p + R J θ 0 ρ 0 -RR_0R^Tp+Rp_0+p=-R(1+J_{\theta_0}\bm{\hat\theta}_0)R^Tp+Rp_0+p\\=-p-RJ_{\theta_0}\bm{\hat\theta}_0R^Tp+RJ_{\theta_0}\rho_0+p\\=-RJ_{\theta_0}\bm{\hat\theta}_0R^Tp+RJ_{\theta_0}\rho_0\\=-RJ_{\theta_0}\bm{\hat\theta}_0p+RJ_{\theta_0}\rho_0 RR0RTp+Rp0+p=R(1+Jθ0θ^0)RTp+Rp0+p=pRJθ0θ^0RTp+RJθ0ρ0+p=RJθ0θ^0RTp+RJθ0ρ0=RJθ0θ^0p+RJθ0ρ0

李括号(Lie Bracket)和伴随(adjoint representation)

设a,b为两个李代数元素, A和B为对应的李群表示:
A = a ^ , B = b ^ A =\hat a, B = \hat b A=a^,B=b^
exp ⁡ ( A + B ) = exp ⁡ ( a ^ + b ^ ) = exp ⁡ ( A ) exp ⁡ ( B ) exp ⁡ ( − 1 2 [ A , B ] ) \begin{aligned}&\exp(A+B)=\exp(\hat a+\hat b)= \exp(A)\exp(B)\exp(-\frac12[A,B])\end{aligned} exp(A+B)=exp(a^+b^)=exp(A)exp(B)exp(21[A,B])
[]表示李括号
[ a , b ] = [ a ^ b ^ − b ^ a ^ ] ∨ [a,b]=[\hat a\hat b-\hat b \hat a]^\vee [a,b]=[a^b^b^a^] [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=ABBA

note:李群 exp ⁡ ( A + B ) = exp ⁡ ( A ) exp ⁡ ( B ) \exp(A+B) = \exp(A)\exp(B) exp(A+B)=exp(A)exp(B)性质不一定成立。

BCH展开公式:
e A e B = exp ⁡ { A + B + 1 2 ! [ A , B ] + 1 3 ! ( 1 2 [ A , [ A , B ] ] + 1 2 [ [ A , B ] , B ] ) + ⋯   } , \begin{aligned}e^{A}e^{B}=\exp\{A+B+\frac{1}{2!}[A,B]+\frac{1}{3!}(\frac{1}{2}[A,[A,B]]+\frac{1}{2}[[A,B],B])+\cdots\},\end{aligned} eAeB=exp{A+B+2!1[A,B]+3!1(21[A,[A,B]]+21[[A,B],B])+},
即:
l n ( e A e B ) = A + B + 1 2 ! [ A , B ] + 1 3 ! ( 1 2 [ A , [ A , B ] ] + 1 2 [ [ A , B ] , B ] ) + ⋯ ln(e^{A}e^{B})=A+B+\frac{1}{2!}[A,B]+\frac{1}{3!}(\frac{1}{2}[A,[A,B]]+\frac{1}{2}[[A,B],B])+\cdots ln(eAeB)=A+B+2!1[A,B]+3!1(21[A,[A,B]]+21[[A,B],B])+

e A B e − A = B + [ A , B ] + 1 2 ! [ A , [ A , B ] ] + … , \begin{aligned}e^{A}Be^{-A}=B+[A,B]+\frac{1}{2!}[A,[A,B]]+\ldots,\end{aligned} eABeA=B+[A,B]+2!1[A,[A,B]]+,

对于李代数中的元素 ( a ) 和 ( b ),如果它们之间的对易子(李括号)为 ( [ a , b ] [a, b] [a,b]),那么这个对易子可以被表示为 ( a d a ( b ) ad_a(b) ada(b) ),表示 ( b ) 在 ( a ) 的伴随表示下的像,即
a d a b = [ a , b ] = [ A B − B A ] ∨ ad_ab =[a,b]=[AB-BA]^\vee adab=[a,b]=[ABBA]

a = [ θ a ρ a ] , A = [ θ a ∧ ρ a ∧ 0 0 ] \boldsymbol{a}=\begin{bmatrix}\boldsymbol{\theta}_a\\\boldsymbol{\rho}_a\end{bmatrix}, A =\left[ \begin{array}{ccc} \boldsymbol{\theta}_a^\wedge&\boldsymbol{\rho}_a^\wedge\\0&0 \end{array} \right] a=[θaρa],A=[θa0ρa0] b = [ θ b ρ b ] , B = [ θ b ∧ ρ b ∧ 0 0 ] \boldsymbol{b}=\begin{bmatrix}\boldsymbol{\theta}_b\\\boldsymbol{\rho}_b\end{bmatrix}, B =\left[ \begin{array}{ccc} \boldsymbol{\theta}_b^\wedge&\boldsymbol{\rho}_b^\wedge\\0&0 \end{array} \right] b=[θbρb],B=[θb0ρb0]
a d a = [ θ a ∧ 0 ρ a ∧ θ a ∧ ] ad_a=\left[ \begin{array}{ccc} \boldsymbol{\theta}_a^\wedge&0\\\boldsymbol{\rho}_a^\wedge&\boldsymbol{\theta}_a^\wedge \end{array} \right] ada=[θaρa0θa]

Tips:
θ a ∧ θ b ∧ − θ b ∧ θ a ∧ = θ a ∧ θ b = − θ b ∧ θ a \boldsymbol{\theta}_a^\wedge\boldsymbol{\theta}_b^\wedge-\boldsymbol{\theta}_b^\wedge\boldsymbol{\theta}_a^\wedge=\boldsymbol{\theta}_a^\wedge\boldsymbol{\theta}_b=-\boldsymbol{\theta}_b^\wedge\boldsymbol{\theta}_a θaθbθbθa=θaθb=θbθa

参考文献:https://zhuanlan.zhihu.com/p/647480442

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值