11、系统稳定性分析与李雅普诺夫函数的应用

系统稳定性分析与李雅普诺夫函数的应用

1. 时变系统稳定性分析基础

时变系统的稳定性分析比时不变系统更具挑战性,主要原因在于寻找合适的李雅普诺夫函数难度更大。对于时变系统,有一个时变的可能李雅普诺夫函数,它是一个正定标量函数,并且支配着时不变正定标量函数 (V_0(x) = x_1^2 + x_2^2),同时它又被时不变正定标量函数 (V_1(x) = x_1^2 + 2x_2^2) 所支配,因此它也是一个递减函数。其梯度相关的 (V(t, x)) 是负定函数,从 (V[t,X(t)] = -2 [x_1^2 - x_1x_2 + x_2^2(1 + 2e^{-2t})]) 以及 (V[t,X(t)] \leq -2(x_1^2 - x_1x_2 + x_2^2) = -(x_1 - x_2)^2 - x_1^2 - x_2^2) 可以看出,该系统的平衡状态是全局渐近稳定的。

2. 利用巴尔巴拉特引理进行稳定性分析

巴尔巴拉特引理常用于时变系统的稳定性分析,因为定理 2.5 的条件在工程实践中较难满足。在使用引理之前,需要了解函数及其导数的渐近性质:
- (f’ \to 0) 既不意味着函数收敛,也不意味着 (t \to \infty) 时 (f(t)) 有界。例如,函数 (f(t) = \sin(\log t)),当 (t \to \infty) 时 (f’(t) \to 0),但函数会随着 (t) 的增加振荡得越来越慢;函数 (f(t) = \frac{1}{t}\sin(\log t)) 则是无界的。
- (f(t)) 收敛并不意味着 (f’ \to 0)。例如,(f(t) = e^{-t} \sin(e^{2t})) 趋于零,但 (f’(t)) 在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值