GrabCut算法、物体显著性检测

图割GraphCus算法。利用颜色、纹理等信息对GraphCut进行改进,形成效果更好的GrabCut算法。

对图像的目标物体和背景建立一个K维的全协方差高斯混合模型。
其中,单高斯模型的概率密度函数用公式表示为:

 高斯混合模型可表示为n个单高斯模型的概率密度加权之和:
Pi为第i个高斯模型的权值。

对含有N个像素点的图像,用z=(z_{1},L,z_{n},L,z_{N})表示。
用不透明度\alpha表示像素点的值。\alpha∈{0,1} 。1表示该像素点属于目标物体,0表示像素点属于背景。

每个像素的独立GMM参数用向量k=(k_{1},L,k_{n},L,k_{N})表示,k_{n}∈{1,2,L,K}。

GrabCut算法:目标提取问题转化为求解能量函数最优解的问题,能量函数表示为:

 数据项定义为:

所以, 该算法只需构建高斯混合模型,不断交互迭代分割估计和模型参数学习过程,就可以实现目标从复杂背景中的提取。

GrabCut算法的缺点

(1)需要人工交互选出包含目标区域的矩形框——解决:模仿人视觉注意力机制的显著性算法可以获取被抓取目标的区域
(2)算法要求每个像素点对应的高斯模型的参数,参数量大,时间复杂度高——解决:超像素代替该超像素中的所有像素进行参数训练

物体显著性检测

 使用超像素结合GrabCut算法对图像进行分割

前提:改进算法得到超像素图。

假设共有N个超像素,用S={S_{1}S_{2},L,S_{n},L,S_{N}}表示每个超像素包含的图像,其中S_{n}表示第n个超像素。将超像素用作网络图的节点,对GMM参数进行估计并迭代处理,则:

 使用超像素代替原始大量像素点初始化构建GMM模型,构建网络图进行参数估计并迭代计算,对图像进行分割可以提高GrabCut的运算效率。

实现流程

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值