dgcnn改进idea

1.DGCNN中自适应确定k-NN中的k值。

参考论文:

自适应采样:3D reconstruction of complex weld geometry based on adaptive sampling

自适应地构建不同特征对应的卷积核:SAKS: Sampling Adaptive Kernels from Subspace for Point Cloud Graph Convolution

基于动态视角的自适应k均值算法:Dimension fitting of wheat spikes in dense 3D point clouds based on the adaptive k-means algorithm with dynamic perspectives

自适应采样(AS)模块:PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling

 Voronoi 图:Adaptively Up-Sampling Point-Sampled Models

刚性配准的新框架:PointGMM: A Neural GMM Network for Point Clouds

【看看top-k最近邻这个点。应该就是普通的k近邻】top-k最近邻自适应调整稀疏体素的感受野:ARFA: Adaptive Reception Field Aggregation for 3D Detection from LiDAR Point Cloud

提高检测被遮挡和小物体的感知性能:DA-Net: Density-Aware 3D Object Detection Network for Point Clouds

yolov5:Improvement of YOLOV5 Model Based on the Structure of Multiscale Domain Adaptive Network for Crowdscape

 

构建邻域图:

🎈在bin-picking场景中,通常需要对密集的点云进行物体检测和姿态估计。由于这些点云通常非常密集,使用传统的K-NN算法可能会导致邻居之间存在重叠的问题,影响点云分割和姿态估计的效果。

🎈因此,在bin-picking场景中,一般会使用半径邻域 (Radius Neighbors) 方法来构建点云的邻域图,通过设置合适的半径值来控制邻域的大小。半径邻域方法相对于K-NN方法具有更好的适应性,可以更好地处理局部密度变化的点云,并且可以更好地控制邻居之间的重叠问题。

🎈此外,在bin-picking场景中,还可以考虑使用基于图的算法,如alpha shapes或Voronoi图,来构建点云的邻域图。这些算法可以有效地去除重叠和噪声,提高物体检测和姿态估计的准确性。

🎈有几个算法可以自适应地确定 k-nearest neighbor (k-NN) 搜索中的 k 值,这可以提高 DGCNN 算法的性能。以下是其中的几个例子:

  1. 自适应 k-d tree (AKD) 算法:该算法递归地构建 k-d 树,并根据局部区域中数据点的密度确定 k 值。在密度高的区域,使用较小的 k 值,以便更准确地捕捉数据点之间的相似性。

  2. 自适应 k-NN (AKNN) 算法:该算法利用局部密度估计确定 k 值。它将每个查询点的 k 值设定为其最近邻点的平均 k 值,从而使得 k 值可以自适应地适应不同密度的数据集。

  3. 可变 k-NN (VKNN) 算法:该算法根据查询点和邻居之间的距离,以及邻居之间的距离,自适应地确定 k 值。这样可以在不同的局部区域中使用不同的 k 值,以便更准确地捕捉局部相似性。

🎈这三种算法在自适应确定 k 值的方式上略有不同,适用于不同的场景。

  1. 自适应 k-d tree (AKD) 算法:适用于密度变化较大的数据集。它通过构建 k-d 树并根据局部密度来确定 k 值,能够更准确地捕捉不同密度区域中的相似性,因此在处理密度变化大的数据集时效果较好。

  2. 自适应 k-NN (AKNN) 算法:适用于密度变化较小的数据集。该算法采用局部密度估计来确定 k 值,能够自适应地适应不同密度的数据集,并能够更准确地捕捉数据点之间的相似性。因此,当数据集密度变化较小时,AKNN 算法比较适合使用。

  3. 可变 k-NN (VKNN) 算法:适用于局部密度变化明显的数据集。VKNN 算法考虑了查询点和邻居之间的距离,以及邻居之间的距离,能够自适应地确定不同局部区域的 k 值,并能够更准确地捕捉局部相似性。因此,在处理局部密度变化明显的数据集时,VKNN 算法比较适合使用。

 

🎈在这里,"密度变化大" 和 "密度变化小" 指的是数据集中不同区域的数据点分布密度变化的程度。

如果数据集中不同区域的数据点密度变化很大,那么这些区域内的数据点密度差异很大,可能存在一些密集的区域和一些稀疏的区域。在这种情况下,采用固定的 k 值搜索可能无法很好地捕捉数据点之间的相似性,因为相邻点的密度差异很大,需要使用自适应的 k 值来适应不同密度区域的变化。这种情况下,使用 AKD 算法可能更为合适。

如果数据集中不同区域的数据点密度变化较小,那么这些区域内的数据点密度差异较小,相邻点的密度相似,使用固定的 k 值搜索可能能够较好地捕捉数据点之间的相似性。这种情况下,使用 AKNN 算法可能更为合适。

总之,密度变化大与否取决于数据集中不同区域内数据点密度的差异大小,可以通过数据可视化等方式来观察。

2.用PAConv改进DGCNN网络。替代Edge Conv。

KPConv

 

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值