PDE选填01

PDE的几个算子对比

在偏微分方程中,梯度算子(Gradient)、散度算子(Divergence)和拉普拉斯算子(Laplace Operator)都是基本的微分算子,它们的阶数如下:

  1. 梯度算子 ∇ \nabla ):是一个一阶算子。梯度算子作用于一个标量函数 f ( x , y , z ) f(x, y, z) f(x,y,z),结果是一个向量,每个分量是对应坐标的一阶偏导数。

  2. 散度算子 ∇ ⋅ \nabla \cdot ):也是一个一阶算子。散度算子作用于一个向量场 v ⃗ ( x , y , z ) \vec{v}(x, y, z) v (x,y,z),结果是一个标量,它是向量场每个(方向)分量关于其对应坐标的一阶偏导数的和。

  3. 拉普拉斯算子 Δ \Delta Δ ∇ 2 \nabla^2 2):是一个二阶算子。拉普拉斯算子可以被视为梯度算子的散度(即 ∇ ⋅ ( ∇ f ) \nabla \cdot (\nabla f) (f)),它作用于一个标量函数 f ( x , y , z ) f(x, y, z) f(x,y,z),结果是该函数的所有二阶偏导数的和。

这些算子在物理、工程和数学等领域的许多问题中都非常重要,例如在电磁学、流体动力学和热传递等领域。

散度算子作用于向量场 v v v的结果的表达式是什么?

散度算子作用于一个向量场 v ⃗ \vec{v} v 的表达式涉及计算向量场的每个分量相对于其对应坐标的偏导数,并将这些偏导数相加。假设向量场 v ⃗ \vec{v} v 在三维空间中表示为 v ⃗ = ( v x , v y , v z ) \vec{v} = (v_x, v_y, v_z) v =(vx,vy,vz)其中 v x , v y , v z v_x, v_y, v_z vx,vy,vz 分别是向量场在 x , y , z x, y, z x,y,z 方向的分量,那么 v ⃗ \vec{v} v 的散度表示为: ∇ ⋅ v ⃗ = ∂ v x ∂ x + ∂ v y ∂ y + ∂ v z ∂ z \nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} v =xvx+yvy+zvz这个表达式的意义在于计算向量场在每个点的扩张或收缩程度,是流体力学和电磁学中描述场的局部性质的一个重要工具。在数学上,散度测量的是一个向量场的“源”或“汇”的强度。如果散度为正,则在那一点向量场表现为源;如果为负,则表现为汇;如果为零,则表明在那一点向量场保持不变。

判断方程阶数

u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t)

这个方程是一个一阶的偏微分方程。下面我会详细解释判断的过程:

首先,我们来理解方程的结构。方程是:
u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t)
这里, u \mathbf{u} u 是一个向量场, x \mathbf{x} x 是空间变量, t t t 是时间变量, f \mathbf{f} f 是一个向量函数,依赖于空间变量和时间。

  • u \mathbf{u} u:向量场,可以表示为 u = ( u 1 , u 2 , u 3 ) \mathbf{u} = (u_1, u_2, u_3) u=(u1,u2,u3),其中 u 1 , u 2 , u 3 u_1, u_2, u_3 u1,u2,u3 x \mathbf{x} x t t t 的函数。

  • ∇ ⋅ u \nabla\cdot \mathbf{u} u:这是 u \mathbf{u} u 的散度,是一个标量场。散度的定义是:
    ∇ ⋅ u = ∂ u 1 ∂ x 1 + ∂ u 2 ∂ x 2 + ∂ u 3 ∂ x 3 \nabla\cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} u=x1u1+x2u2+x3u3
    其中, x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 表示空间坐标。

在方程 u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t) 中, ∇ ⋅ u \nabla\cdot \mathbf{u} u 的计算涉及到 u \mathbf{u} u 的一阶偏导数。这是因为散度计算本身就是求各个分量相对于其对应坐标的一阶偏导数的和。

  • 乘积 u ∇ ⋅ u \mathbf{u}\nabla\cdot \mathbf{u} uu:这里 u \mathbf{u} u 是向量, ∇ ⋅ u \nabla\cdot \mathbf{u} u 是标量,因此 u ∇ ⋅ u \mathbf{u}\nabla\cdot \mathbf{u} uu 仍然是一个向量,每个分量都是 ∇ ⋅ u \nabla\cdot \mathbf{u} u 乘以对应的 u i u_i ui。这个操作不会增加偏导数的阶数,因为 u \mathbf{u} u 本身不涉及导数操作。

因此,整个方程 u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t) 中涉及的最高阶导数是一阶偏导数,即 ∇ ⋅ u \nabla\cdot \mathbf{u} u 的计算。根据偏微分方程的阶数定义,一个方程的阶数是方程中出现的最高阶偏导数的阶数。所以,这个方程是一阶偏微分方程。

请判断这是几阶的偏微分方程并详细解释原因, u t ∇ ⋅ u = f ( x , t ) \mathbf{u}_t\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) utu=f(x,t)

为了判断这是几阶的偏微分方程,我们需要确定方程中出现的最高阶导数的阶数。

  1. u t \mathbf{u}_t ut 的解释

    • u t \mathbf{u}_t ut 表示向量函数 u \mathbf{u} u 对时间 t t t 的一阶偏导数。
  2. ∇ ⋅ u \nabla \cdot \mathbf{u} u 的解释

    • ∇ ⋅ u \nabla \cdot \mathbf{u} u 表示向量 u \mathbf{u} u 的散度,这是一个标量场。计算散度涉及对 u \mathbf{u} u 的各个分量进行空间的一阶偏导数。
  3. 方程的阶数

    • 阶数由方程中涉及的最高阶导数决定。在此方程中, u t \mathbf{u}_t ut ∇ ⋅ u \nabla \cdot \mathbf{u} u 均为一阶导数。虽然方程左侧是这两个一阶导数的乘积,但它不产生更高阶的导数
    • 因此,每个项本身都是一阶导数,没有更高阶的导数涉及。

综上,该偏微分方程是一阶偏微分方程。主要原因是方程中出现的最高阶导数为一阶。

这个方程 u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t) 是一个偏微分方程。下面是我的解释:

  1. 偏微分方程的定义
    偏微分方程(Partial Differential Equation, PDE)是涉及未知函数及其偏导数的方程。这类方程通常用来描述物理、工程或者经济学中的某些现象,其中函数的变量超过一个。

  2. 方程的组成

    • u \mathbf{u} u 是一个向量函数,依赖于空间坐标 x \mathbf{x} x 和时间 t t t,即 u = u ( x , t ) \mathbf{u} = \mathbf{u}(\mathbf{x}, t) u=u(x,t)
    • ∇ ⋅ u \nabla\cdot \mathbf{u} u 表示向量场 u \mathbf{u} u 的散度,是一个标量函数。散度的计算涉及到 u \mathbf{u} u 的偏导数,例如,如果 u = ( u 1 , u 2 , u 3 ) \mathbf{u} = (u_1, u_2, u_3) u=(u1,u2,u3),那么 ∇ ⋅ u = ∂ u 1 ∂ x + ∂ u 2 ∂ y + ∂ u 3 ∂ z \nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z} u=xu1+yu2+zu3
    • f ( x , t ) \mathbf{f}(\mathbf{x}, t) f(x,t) 是一个已知的向量函数,依赖于空间坐标和时间。
  3. 偏微分方程的特征
    方程 u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t) 中的 u ∇ ⋅ u \mathbf{u}\nabla\cdot \mathbf{u} uu 部分隐含了对函数 u \mathbf{u} u 及其偏导数的依赖。这意味着, u \mathbf{u} u 与其偏导数通过散度操作联系在一起,并且还与空间和时间变量有关,这正是偏微分方程的标志性特征。

综上所述,由于 u ∇ ⋅ u = f ( x , t ) \mathbf{u}\nabla\cdot \mathbf{u}=\mathbf{f}(\mathbf{x},t) uu=f(x,t) 中的未知函数 u \mathbf{u} u 和其偏导数 ∇ ⋅ u \nabla \cdot \mathbf{u} u 直接参与方程,同时这些函数依赖于多个变量 x \mathbf{x} x t t t,因此该方程是一个偏微分方程。

判断方程的线性类型

单独观察这一项 u ∇ ⋅ u \mathbf{u} \nabla \cdot \mathbf{u} uu,它是一个非线性项

是的,单独观察项 u ∇ ⋅ u \mathbf{u} \nabla \cdot \mathbf{u} uu,这确实是一个非线性项。

这里, ∇ ⋅ u \nabla \cdot \mathbf{u} u 表示 u \mathbf{u} u 的散度,是一个依赖于 u \mathbf{u} u 的一阶空间导数的运算。将 u \mathbf{u} u 乘以 ∇ ⋅ u \nabla \cdot \mathbf{u} u 创建了一个新项,其中解 u \mathbf{u} u 与其一阶导数相乘,形成非线性关系。非线性性主要源自于解函数与其导数的乘积形式,即便这些导数是以线性方式出现(如在散度运算中)。

在偏微分方程的背景下,这种类型的项常见于流体动力学和非线性波动等领域的模型中,它们经常引入复杂的行为,如冲击波、奇异解等现象。

u t − c u ∇ ⋅ u − a 2 Δ u = f ( x , t ) \mathbf{u}_t-c\mathbf{u}\nabla\cdot \mathbf{u}-a^2\Delta \mathbf{u}=\mathbf{f}(\mathbf{x},t) utcuua2Δu=f(x,t),其中 c , a c,a c,a 是参数。

要判断给定的偏微分方程 u t − c u ∇ ⋅ u − a 2 Δ u = f ( x , t ) \mathbf{u}_t - c\mathbf{u} \nabla \cdot \mathbf{u} - a^2 \Delta \mathbf{u} = \mathbf{f}(\mathbf{x}, t) utcuua2Δu=f(x,t) 属于线性(linear)、拟线性(quasi-linear)、半线性(semi-linear)或完全非线性(fully nonlinear)中的哪一类,我们可以根据方程中最高阶导数的系数是否依赖于解 u \mathbf{u} u 及其导数来进行判断。

  1. 线性方程(Linear):所有含有 u \mathbf{u} u u \mathbf{u} u 的各阶偏导数的项的系数只依赖于变量(比如 x , t x, t x,t)或者是常数(包含参数),而不依赖于函数 u \mathbf{u} u 或其任何阶的偏导数。

  2. 拟线性方程(Quasi-linear):最高阶导数的系数可以依赖于 u \mathbf{u} u 及其低阶导数,但对于最高阶导数来说,应该是线性的。

  3. 半线性方程(Semi-linear):最高阶导数的系数只依赖于变量(比如 x , t x, t x,t),但方程可以包含 u \mathbf{u} u 及其低阶导数的非线性项。

  4. 完全非线性方程(Fully nonlinear):最高阶导数的系数是 u \mathbf{u} u 及其任何阶偏导数的非线性函数。

对于方程 u t − c u ∇ ⋅ u − a 2 Δ u = f ( x , t ) \mathbf{u}_t - c\mathbf{u} \nabla \cdot \mathbf{u} - a^2 \Delta \mathbf{u} = \mathbf{f}(\mathbf{x}, t) utcuua2Δu=f(x,t)

  • u t \mathbf{u}_t ut 是一阶时间导数;
  • c u ∇ ⋅ u c\mathbf{u} \nabla \cdot \mathbf{u} cuu u \mathbf{u} u 及其一阶空间导数的非线性项;
  • a 2 Δ u a^2 \Delta \mathbf{u} a2Δu 是二阶空间导数,且其系数 a 2 a^2 a2 只依赖于参数而非 u \mathbf{u} u 或其导数。

由于 u t \mathbf{u}_t ut Δ u \Delta \mathbf{u} Δu 的系数(1 和 a 2 a^2 a2)不依赖于 u \mathbf{u} u 或其导数,而 c u ∇ ⋅ u c\mathbf{u} \nabla \cdot \mathbf{u} cuu 依赖于 u \mathbf{u} u ∇ ⋅ u \nabla \cdot \mathbf{u} u(一阶导数),可以看出:

  • 最高阶导数( Δ u \Delta \mathbf{u} Δu)的系数不依赖于 u \mathbf{u} u 或其导数,这符合半线性方程的定义。

因此,此方程属于半线性方程

也就是说,一个线性方程(Linear),其任何含有 u \mathbf{u} u u \mathbf{u} u 的各阶偏导数的项,它们的系数都只依赖于变量或是参数常数,而不能是 u \mathbf{u} u u \mathbf{u} u 的各阶偏导数乘积组合,对吗?

是的,您的理解是正确的。对于一个线性方程

  • 方程中涉及到解函数 u \mathbf{u} u 或其任何阶偏导数的系数必须是常数或者仅依赖于自变量(比如 x x x t t t 等),而不能是 u \mathbf{u} u 或其偏导数的函数。
  • 这意味着方程形式必须保持解函数及其导数的线性性质,不能有如 u 2 \mathbf{u}^2 u2 u u x \mathbf{u} \mathbf{u}_x uux 等依赖于解的非线性项。

举个简单的例子,方程 u t + a u x = 0 \mathbf{u}_t + a \mathbf{u}_x = 0 ut+aux=0 是线性的,因为 u t \mathbf{u}_t ut u x \mathbf{u}_x ux 的系数(分别是 1 和 a a a)都是常数。相比之下,方程 u t + u u x = 0 \mathbf{u}_t + \mathbf{u} \mathbf{u}_x = 0 ut+uux=0 是非线性的,因为 u x \mathbf{u}_x ux 的系数 u \mathbf{u} u 依赖于解函数本身。

区分拟线性方程和半线性方程

在这里插入图片描述

半线性方程的特点是最高阶导数的系数不依赖于解 u \mathbf{u} u 或其任何阶的偏导数,但方程可能包含解或其低阶导数的非线性项。示例方程: u t + u 3 u x = Δ u \mathbf{u}_t + \mathbf{u}^3 \mathbf{u}_x = \Delta \mathbf{u} ut+u3ux=Δu
在这个方程中:

  • 最高阶导数 Δ u \Delta \mathbf{u} Δu 的系数为 1,与 u \mathbf{u} u 或其任何导数无关,满足线性条件。
  • 方程中的非线性项 u 3 u x \mathbf{u}^3 \mathbf{u}_x u3ux 包含一阶导数 u x \mathbf{u}_x ux,其系数是 u 3 \mathbf{u}^3 u3,是解 u \mathbf{u} u 的非线性函数。

这个例子说明,尽管有低阶导数的非线性系数,但由于最高阶导数的系数保持线性且不依赖于解或其他导数,因此方程是半线性的。

拟线性方程的关键是,最高阶导数的系数可以依赖于解 u \mathbf{u} u 或其低阶偏导数,但最高阶导数本身必须线性出现,也就是说,例如下面这个方程中 u x x \mathbf{u}_{xx} uxx 不能是平方项 u x x 2 \mathbf{u}_{xx}^2 uxx2

拟线性方程的示例方程:

u t + u u x + u u x x = 0 \mathbf{u}_t + \mathbf{u} \mathbf{u}_x + \mathbf{u} \mathbf{u}_{xx} = 0 ut+uux+uuxx=0

u ∇ ⋅ u \mathbf{u} \nabla \cdot \mathbf{u} uu

判断PDE齐次方程和非齐次方程

偏微分方程是齐次的,通常指方程的每一项都含有相同阶数的导数,且方程中不含有独立于未知函数及其导数的项。更准确地说,一个偏微分方程是齐次的,如果方程可以写成未知函数及其偏导数的形式,而没有额外的常数项或者不依赖于未知函数及其偏导数的其他函数。

具体来说,判断一个偏微分方程是否是齐次方程,可以通过检查方程的每一项来进行:

  1. 检查非导数项:观察方程中是否存在不依赖于未知函数及其偏导数的常数项或函数项。如果存在这样的项,那么该方程是非齐次的。

  2. 分析每一项的结构:确保方程中的每一项都是未知函数及其偏导数的乘积形式,且所有项应具有相同的线性或非线性形式。

  3. 例子

    • 齐次方程示例: u x x + u y y + u = 0 u_{xx} + u_{yy} + u = 0 uxx+uyy+u=0
    • 非齐次方程示例: u x x + u y y + u = f ( x , y ) u_{xx} + u_{yy} + u = f(x, y) uxx+uyy+u=f(x,y),其中 f ( x , y ) f(x, y) f(x,y) 是一个不依赖于 u u u 及其偏导数的函数。

通过上述步骤,你可以判断给定的偏微分方程是否是齐次的。如果所有项都直接依赖于未知函数及其偏导数,并且不存在独立的非零常数或其他函数项,则该方程是齐次的。

判断一维偏微分方程的类型

u x + u y y − u y = x y u_x+u_{yy}-u_y=xy ux+uyyuy=xy 属于椭圆型,双曲型,抛物型的哪一类偏微分方程?
要确定一个偏微分方程的类型(椭圆型、双曲型、抛物型),我们主要依据的是二阶偏微分方程的最高阶导数项的系数矩阵。对于二阶线性偏微分方程:
A u x x + 2 B u x y + C u y y + lower order terms = 0 A u_{xx} + 2B u_{xy} + C u_{yy} + \text{lower order terms} = 0 Auxx+2Buxy+Cuyy+lower order terms=0

我们将通过计算判别式 D = B 2 − A C D = B^2 - AC D=B2AC 来分类:

  • 如果 D < 0 D < 0 D<0,方程是椭圆型的。
  • 如果 D = 0 D = 0 D=0,方程是抛物型的。
  • 如果 D > 0 D > 0 D>0,方程是双曲型的。

对于给定的方程 u x + u y y − u y = x y u_x + u_{yy} - u_y = xy ux+uyyuy=xy,我们首先要将它写成标准形式。这个方程的二阶导数项是 u y y u_{yy} uyy,一阶导数项有 u x u_x ux u y u_y uy。重写此方程,便于观察系数:
0 ⋅ u x x + 0 ⋅ u x y + 1 ⋅ u y y − u y + u x = x y 0 \cdot u_{xx} + 0 \cdot u_{xy} + 1 \cdot u_{yy} - u_y + u_x = xy 0uxx+0uxy+1uyyuy+ux=xy

在这里:

  • A = 0 A = 0 A=0 u x x u_{xx} uxx 的系数)
  • B = 0 B = 0 B=0 u x y u_{xy} uxy 的系数)
  • C = 1 C = 1 C=1 u y y u_{yy} uyy 的系数)

A A A B B B C C C 的值代入判别式公式,我们有:
D = B 2 − A C = 0 2 − 0 ⋅ 1 = 0 D = B^2 - AC = 0^2 - 0 \cdot 1 = 0 D=B2AC=0201=0

因此,判别式 D = 0 D = 0 D=0,这表示给定的方程 u x + u y y − u y = x y u_x + u_{yy} - u_y = xy ux+uyyuy=xy 是抛物型的。抛物型偏微分方程通常与扩散过程、热传导等物理现象相关,其中时间发挥着特别的作用,与空间变量表现出不同的特性。

给出二阶偏微分方程 u t t − u x x − u x y = x 2 t u_{tt}-u_{xx}-u_{xy}=x^2t uttuxxuxy=x2t 的三维系数矩阵

对于二阶偏微分方程 u t t − u x x − u x y = x 2 t u_{tt} - u_{xx} - u_{xy} = x^2t uttuxxuxy=x2t,我们可以通过分析每个项的系数来确定三维系数矩阵。在这个方程中,我们有三个变量: x , y , t x,y,t x,y,t,尽管 y y y 没有直接出现在方程中。我们可以将这个方程写成更一般的形式:

A u x x + B u y y + C u t t + D u x y + E u x t + F u y t = G A u_{xx} + B u_{yy} + C u_{tt} + D u_{xy} + E u_{xt} + F u_{yt} = G Auxx+Buyy+Cutt+Duxy+Euxt+Fuyt=G

对于我们的方程,我们有:

  • A = − 1 A = -1 A=1, 因为 u x x u_{xx} uxx 的系数是 -1。
  • B = 0 B = 0 B=0, 因为方程中没有 u y y u_{yy} uyy 项。
  • C = 1 C = 1 C=1, 因为 u t t u_{tt} utt 的系数是 1。
  • D = − 1 D = -1 D=1, 因为 u x y u_{xy} uxy 的系数是 -1。
  • E = 0 E = 0 E=0, 因为方程中没有 u x t u_{xt} uxt 项。
  • F = 0 F = 0 F=0, 因为方程中没有 u y t u_{yt} uyt 项。

因此,三维系数矩阵(对应于 x , y , t x,y,t x,y,t 方向)可以表示为:

[ A D / 2 E / 2 D / 2 B F / 2 E / 2 F / 2 C ] = [ − 1 − 1 / 2 0 − 1 / 2 0 0 0 0 1 ] = A \begin{bmatrix} A & D/2 & E/2 \\ D/2 & B & F/2 \\ E/2 & F/2 & C \end{bmatrix}=\begin{bmatrix} -1 & -1/2 & 0 \\ -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}=\mathbf{A} AD/2E/2D/2BF/2E/2F/2C = 11/201/200001 =A

计算矩阵 A \mathbf{A} A 的特征值,解 ∣ λ E − A ∣ = 0 |\lambda \mathbf{E}-\mathbf{A}|=0 λEA=0 就可 , ∣ λ E − A ∣ |\lambda \mathbf{E}-\mathbf{A}| λEA 是行列式。

对于一个二阶偏微分方程,其对应的系数矩阵的特征值可以用来判断方程的类型。这些类型的定义基于特征值的符号,如下:

  • 椭圆型:如果所有的特征值都有相同的符号(要么全正,要么全负),那么该方程是椭圆型的。
  • 双曲型:如果一个特征值与其他特征值的符号不同,即一个特征值的符号与其余两个的符号相反(例如,两个正一个负或者两个负一个正),那么该方程是双曲型的。
  • 抛物型:如果至少有一个特征值是零,而其余特征值的符号相同,那么该方程是抛物型的。

在这个例子中,由于矩阵的特征值不全为同号,我们可以推断出原方程是双曲型偏微分方程。

给定一个一般形式的二阶线性偏微分方程,如何判断其是椭圆型 or 双曲型 or 抛物型对于一个二阶线性偏微分方程,其一般形式可以表示为:

A u x x + 2 B u x y + C u y y + lower order terms = 0 Au_{xx} + 2Bu_{xy} + Cu_{yy} + \text{lower order terms} = 0 Auxx+2Buxy+Cuyy+lower order terms=0

其中, A A A, B B B, 和 C C C 是系数,它们可以是常数或者变量的函数。

判断这个方程是椭圆型、双曲型还是抛物型,我们需要计算判别式 D = B 2 − A C D = B^2 - AC D=B2AC

  • 如果 D < 0 D < 0 D<0,那么方程是椭圆型的。
  • 如果 D > 0 D > 0 D>0,那么方程是双曲型的。
  • 如果 D = 0 D = 0 D=0,那么方程是抛物型的。

解的稳定性

{ u t − u x x = f ( x , t ) , x ∈ ( 0 , l ) , 0 ≤ t < T u ( x , T ) = φ ( x ) , x ∈ [ 0 , l ] , u ( 0 , t ) = u ( l , t ) = 0 , 0 ≤ t ≤ T \left\{ \begin{aligned} &u_{t} -u_{xx} = f(x,t), x\in (0,l),0\leq t<T \\ &u(x,T)=\varphi (x), x\in [0,l], \\ &u(0,t) = u(l,t)=0, 0\leq t\leq T \end{aligned} \right. utuxx=f(x,t),x(0,l),0t<Tu(x,T)=φ(x),x[0,l],u(0,t)=u(l,t)=0,0tT

判断题答案说这个定解问题的解是不稳定的。
这个问题解的不稳定性主要源于问题的逆时性和相关的数学性质。这种类型的问题在数学和物理上都是典型的不适定问题,需要特别的数学技巧或正则化方法来寻找可能的解或近似解。

初始条件:
u ( x , T ) = φ ( x ) u(x, T) = \varphi(x) u(x,T)=φ(x)
这里的“初始条件”实际上是在 t = T t = T t=T 时刻的条件,而非传统的 t = 0 t=0 t=0 时刻。

逆时间问题的敏感性:常规的热方程( u t = u x x + f ( x , t ) u_t = u_{xx} + f(x,t) ut=uxx+f(x,t))描述热量如何随时间扩散和平滑。当时间反转,问题变为从已知的未来状态向未来以外的状态(过去)推断,这在物理上对应于一个非自然过程。这种类型的方程在数学上是不适定的,因为小的变化或扰动在 u ( x , T ) u(x,T) u(x,T) 上可能导致解在更早的时间上有很大的变化。

对称开拓法开拓后的初值问题

{ u t − a 2 u x x = sin ⁡ ( x t ) , x > 0 , t > 0 u ( x , 0 ) = cos ⁡ ( x ) , x ≥ 0 , u ( 0 , t ) = 0 , t ≥ 0 \left\{ \begin{aligned} &u_{t} -a^2u_{xx} = \sin(xt), x>0,t>0 \\ &u(x,0)=\cos (x), x\geq 0, \\ &u(0,t) = 0, t\geq 0 \end{aligned} \right. uta2uxx=sin(xt),x>0,t>0u(x,0)=cos(x),x0,u(0,t)=0,t0请给出延拓后的初值问题

为了使用延拓法解决半无界区域上的问题,我们需要将原始问题扩展到整个实数轴上。这样,我们就可以利用傅里叶变换的技术来解决问题。具体来说,我们需要对方程和初始条件进行延拓,使其在整个实数轴上都有定义。下面是详细的推导过程:

  1. 方程的延拓

    原始方程为
    u t − a 2 u x x = sin ⁡ ( x t ) , x > 0 , t > 0 u_t - a^2 u_{xx} = \sin(xt), \quad x > 0, t > 0 uta2uxx=sin(xt),x>0,t>0

    我们将其延拓到整个实数轴上,即让 x ∈ R x \in \mathbb{R} xR。由于原方程在 x > 0 x>0 x>0时已经给出,我们只需保持在 x < 0 x<0 x<0时方程的形式不变:
    u t − a 2 u x x = sin ⁡ ( x t ) , x ∈ R , t > 0 u_t - a^2 u_{xx} = \sin(xt), \quad x \in \mathbb{R}, t > 0 uta2uxx=sin(xt),xR,t>0

  2. 初始条件的延拓

    原始的初始条件为
    u ( x , 0 ) = cos ⁡ ( x ) , x ≥ 0 u(x, 0) = \cos(x), \quad x \geq 0 u(x,0)=cos(x),x0

    为了将问题扩展到整个实数轴,我们需要对初始条件进行延拓。一种常见的方法是使用符号函数(sign function)来保持函数的奇偶性。具体来说,我们可以将初始条件延拓为
    u ( x , 0 ) = sign ( x ) cos ⁡ ( x ) , x ∈ R u(x, 0) = \text{sign}(x) \cos(x), \quad x \in \mathbb{R} u(x,0)=sign(x)cos(x),xR
    这里, sign ( x ) \text{sign}(x) sign(x)是符号函数,定义为
    sign ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 \text{sign}(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases} sign(x)= 1,0,1,x>0x=0x<0
    通过这种延拓,我们保持了初始条件在 x = 0 x=0 x=0处的连续性,并且使得延拓后的初始条件在 x < 0 x<0 x<0时为 − cos ⁡ ( x ) -\cos(x) cos(x),在 x > 0 x>0 x>0时为 cos ⁡ ( x ) \cos(x) cos(x)

综上,我们得到了延拓后的初值问题:
{ u t − a 2 u x x = sin ⁡ ( x t ) , x ∈ R , t > 0 u ( x , 0 ) = sign ( x ) cos ⁡ ( x ) , x ∈ R \left\{ \begin{aligned} &u_{t} - a^2 u_{xx} = \sin(xt), \quad x \in \mathbb{R}, t > 0 \\ &u(x, 0) = \text{sign}(x) \cos(x), \quad x \in \mathbb{R} \end{aligned} \right. {uta2uxx=sin(xt),xR,t>0u(x,0)=sign(x)cos(x),xR
这样,我们就可以使用傅里叶变换等方法来求解这个延拓后的问题了。

解的最大值

题目一

Ω = { ( x , y ) ∣ 0 < x , y < 1 } \Omega=\{(x,y)|0<x,y<1\} Ω={(x,y)∣0<x,y<1},如果偏微分方程 { − u x x − u y y = − 1 , x , y ∈ Ω , u ( x , y ) ∣ ∂ Ω = e x 2 + y 2 \left\{ \begin{aligned} &-u_{xx} -u_{yy} = -1, x, y\in \Omega, \\ &u(x,y)|_{\partial\Omega} = e^{x^2+y^2} \end{aligned} \right. {uxxuyy=1,x,yΩ,u(x,y)Ω=ex2+y2的解 u ∈ C ( Ω ‾ ) ∩ C 2 ( Ω ) u\in C(\overline{\Omega})\cap C^2(\Omega) uC(Ω)C2(Ω),那么 max ⁡ Ω ‾ u \max_{\overline{\Omega}}u maxΩu 是?

为了求解给定的偏微分方程的最大值,我们可以使用极值理论。给定的方程是一个泊松方程,形式为:

{ − Δ u = f in  Ω , u = g on  ∂ Ω , \begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases} {Δu=fu=gin Ω,on Ω,

其中 Δ u = u x x + u y y \Delta u = u_{xx} + u_{yy} Δu=uxx+uyy 是拉普拉斯算子, f = − 1 f = -1 f=1 是源项, g = e x 2 + y 2 g = e^{x^2 + y^2} g=ex2+y2 是边界条件。

首先,我们知道 u ∈ C ( Ω ‾ ) ∩ C 2 ( Ω ) u \in C(\overline{\Omega}) \cap C^2(\Omega) uC(Ω)C2(Ω) 意味着 u u u 在闭区域 Ω ‾ \overline{\Omega} Ω 上连续,在开区域 Ω \Omega Ω 上二次可微。

根据极值理论,如果 u u u Ω \Omega Ω 内达到极大值,则必有 Δ u ≥ 0 \Delta u \geq 0 Δu0。但是,我们的方程给出 Δ u = − 1 < 0 \Delta u = -1 < 0 Δu=1<0,所以 u u u 不能在 Ω \Omega Ω 内部达到极大值。

因此, u u u 的最大值必须在边界 ∂ Ω \partial\Omega Ω 上取得。由于边界条件是 u ( x , y ) = e x 2 + y 2 u(x,y) = e^{x^2 + y^2} u(x,y)=ex2+y2,我们可以通过最大化 e x 2 + y 2 e^{x^2 + y^2} ex2+y2 来找到 u u u 的最大值。

在边界上, x x x y y y 的取值范围是 [ 0 , 1 ] [0,1] [0,1],所以 x 2 + y 2 x^2 + y^2 x2+y2 的最大值是 2 2 2,当 x = y = 1 x = y = 1 x=y=1 时取得。因此, u u u 的最大值是 e 2 e^2 e2

所以, max ⁡ Ω ‾ u = e 2 \max_{\overline{\Omega}} u = e^2 maxΩu=e2

判断特征值 λ \lambda λ 个数

{ − Δ u + λ u = 0 , in  Ω , u ∣ ∂ Ω = 0 \begin{cases} -\Delta u +\lambda u =0, \text{in}\ \Omega, \\ u |_{\partial\Omega} = 0 \end{cases} {Δu+λu=0,in Ω,uΩ=0

这个说法是正确的。这个问题是一个典型的定解问题,称为狄利克雷(Dirichlet)问题,其中 − Δ u -\Delta u Δu表示 u u u的拉普拉斯算子, Ω \Omega Ω是一个给定的区域, ∂ Ω \partial\Omega Ω是其边界, λ \lambda λ是特征值。

对于这个特定的问题,非零解 u u u存在的条件是 λ \lambda λ必须是该问题的特征值。这些特征值可以通过求解该方程得到,通常是通过分离变量或者使用其他数学方法。这些特征值是离散的,并且可以被证明存在无穷多个,因为随着问题的尺寸或复杂度的增加,总会有更多的特征模式满足边界条件。

因此,对于这个问题,取非零解时的特征值 λ \lambda λ 确实存在无穷多个。这些特征值对应于不同的振动模式或特征函数,它们在物理上可以解释为系统的自然频率。在数学上,这些特征值构成了所谓的特征值谱。

求广义微商

f ( x ) = { e − x − 1 , − 1 ≤ x ≤ 1 0 , o t h e r w i s e f(x)=\begin{cases} e^{-x}-1,\quad -1\leq x\leq 1\\ 0,\quad otherwise \end{cases} f(x)={ex1,1x10,otherwise f ′ ( x ) f'(x) f(x)

广义微商,又称分布导数或广义导数,是对函数的导数概念的扩展,用于处理一些在传统意义上不可导的函数。对于给定的函数 f ( x ) f(x) f(x),我们可以通过求其分布导数来找到广义微商 f ′ ( x ) f'(x) f(x)

对于函数 f ( x ) f(x) f(x),其定义为:
f ( x ) = { e − x − 1 , − 1 ≤ x ≤ 1 0 , otherwise f(x)=\begin{cases} e^{-x}-1, & -1\leq x\leq 1\\ 0, & \text{otherwise} \end{cases} f(x)={ex1,0,1x1otherwise

我们可以将 f ( x ) f(x) f(x) 分为三个部分进行讨论:

  1. x < − 1 x < -1 x<1 时, f ( x ) = 0 f(x) = 0 f(x)=0,因此在这个区间上 f ′ ( x ) = 0 f'(x) = 0 f(x)=0
  2. − 1 ≤ x ≤ 1 -1 \leq x \leq 1 1x1 时, f ( x ) = e − x − 1 f(x) = e^{-x} - 1 f(x)=ex1,这是一个在传统意义上可导的函数,因此在这个区间上 f ′ ( x ) = − e − x f'(x) = -e^{-x} f(x)=ex
  3. x > 1 x > 1 x>1 时, f ( x ) = 0 f(x) = 0 f(x)=0,因此在这个区间上 f ′ ( x ) = 0 f'(x) = 0 f(x)=0

综上所述, f ( x ) f(x) f(x) 的广义微商 f ′ ( x ) f'(x) f(x) 可以表示为:
f ′ ( x ) = { 0 , x < − 1 − e − x , − 1 < x < 1 0 , x > 1 f'(x) = \begin{cases} 0, & x < -1\\ -e^{-x}, & -1 < x < 1\\ 0, & x > 1 \end{cases} f(x)= 0,ex,0,x<11<x<1x>1

需要注意的是,我们还需要考虑在 x = − 1 x = -1 x=1 x = 1 x = 1 x=1 处的导数情况。由于 f ( x ) f(x) f(x) 在这两点处从非零值跳跃到零值,这会导致导数在这两点处存在冲击。因此,我们可以使用狄拉克δ函数(Dirac delta function)来表示这种冲击,其表达式为 δ ( x − a ) \delta(x-a) δ(xa),其中 a a a 是冲击发生的位置。在 x = − 1 x = -1 x=1 处, f ( x ) f(x) f(x) e − 1 e - 1 e1 跳跃到 0 0 0,在 x = 1 x = 1 x=1 处, f ( x ) f(x) f(x) 1 / e − 1 1/e - 1 1/e1 跳跃到 0 0 0。因此,广义微商 f ′ ( x ) f'(x) f(x) 可以进一步表示为:
f ′ ( x ) = { − e − x , − 1 < x < 1 ( e − 1 ) δ ( x + 1 ) , x = − 1 ( 1 e − 1 ) δ ( x − 1 ) , x = 1 0 , otherwise f'(x) = \begin{cases} -e^{-x}, & -1 < x < 1\\ (e - 1)\delta(x + 1), & x=-1\\ \left(\frac{1}{e} - 1\right)\delta(x - 1), & x=1\\ 0, & \text{otherwise} \end{cases} f(x)= ex,(e1)δ(x+1),(e11)δ(x1),0,1<x<1x=1x=1otherwise

这样,我们就得到了函数 f ( x ) f(x) f(x) 的广义微商 f ′ ( x ) f'(x) f(x)

求广义函数值

δ ( x ) \delta(x) δ(x) 是 Dirac function,那么请求解广义函数值 < δ ′ ( x − 1 ) , e − x 2 > <\delta '(x-1),e^{-x^2}> <δ(x1),ex2>

为了解广义函数值 < δ ′ ( x − 1 ) , e − x 2 > <\delta '(x-1),e^{-x^2}> <δ(x1),ex2>,我们首先需要回顾一下广义函数(或分布)的基本性质。对于Dirac函数 δ ( x ) \delta(x) δ(x),其导数 δ ′ ( x ) \delta'(x) δ(x)定义为

< δ ′ ( x − 1 ) , φ ( x ) > = − φ ′ ( 1 ) <\delta'(x-1), \varphi(x)> = -\varphi'(1) <δ(x1),φ(x)>=φ(1)

对于任何光滑的测试函数 φ ( x ) \varphi(x) φ(x)。这是因为Dirac函数的导数是关于原点的奇异性的一阶导数,所以在积分中产生了一个负号。

现在,我们可以将 e − x 2 e^{-x^2} ex2作为测试函数 φ ( x ) \varphi(x) φ(x),因此我们有:

< δ ′ ( x − 1 ) , e − x 2 > = − d d x e − x 2 ∣ x = 1 = − ( − 2 x e − x 2 ) ∣ x = 1 = 2 e − 1 = 2 e <\delta'(x-1), e^{-x^2}> = -\frac{d}{dx}e^{-x^2}\Big|_{x=1} = -(-2xe^{-x^2})\Big|_{x=1} = 2e^{-1} = \frac{2}{e} <δ(x1),ex2>=dxdex2 x=1=(2xex2) x=1=2e1=e2

所以,广义函数值 < δ ′ ( x − 1 ) , e − x 2 > <\delta '(x-1),e^{-x^2}> <δ(x1),ex2> 2 e \frac{2}{e} e2

附注:

要解释为什么 ⟨ δ ′ ( x − 1 ) , φ ( x ) ⟩ = − φ ′ ( 1 ) \langle \delta'(x-1), \varphi(x) \rangle = -\varphi'(1) δ(x1),φ(x)⟩=φ(1),我们需要理解广义函数(或分布)的导数以及它们与测试函数的作用。这里的关键在于理解 Dirac delta 函数的性质及其导数的行为。

Dirac Delta 函数和它的导数

Dirac delta 函数 δ ( x ) \delta(x) δ(x) 是一个广义函数或分布,其定义为:

⟨ δ ( x ) , φ ( x ) ⟩ = φ ( 0 ) \langle \delta(x), \varphi(x) \rangle = \varphi(0) δ(x),φ(x)⟩=φ(0)

对于任何光滑的测试函数 φ ( x ) \varphi(x) φ(x)。这意味着 δ ( x ) \delta(x) δ(x) 在除 x = 0 x = 0 x=0 外的所有点都为零,而在 x = 0 x = 0 x=0 处具有无限的“集中”。

广义函数的导数

广义函数的导数通过与测试函数的积分部分的负导数的作用来定义。具体来说,对于 Dirac delta 函数的导数 δ ′ ( x ) \delta'(x) δ(x),有:

⟨ δ ′ ( x ) , φ ( x ) ⟩ = − ⟨ δ ( x ) , φ ′ ( x ) ⟩ \langle \delta'(x), \varphi(x) \rangle = -\langle \delta(x), \varphi'(x) \rangle δ(x),φ(x)⟩=δ(x),φ(x)⟩

这里使用了分布导数的定义,即分布的导数对测试函数的作用等于该分布对测试函数导数的负作用。

平移 Dirac Delta 函数

当我们考虑 δ ( x − 1 ) \delta(x-1) δ(x1),这是将 δ ( x ) \delta(x) δ(x) 向右平移了 1 单位。对于这个平移的 delta 函数,我们有:

⟨ δ ( x − 1 ) , φ ( x ) ⟩ = φ ( 1 ) \langle \delta(x-1), \varphi(x) \rangle = \varphi(1) δ(x1),φ(x)⟩=φ(1)

接下来,考虑 δ ′ ( x − 1 ) \delta'(x-1) δ(x1),即 δ ( x − 1 ) \delta(x-1) δ(x1) 的导数。根据广义函数导数的定义,我们可以写出:

⟨ δ ′ ( x − 1 ) , φ ( x ) ⟩ = − ⟨ δ ( x − 1 ) , φ ′ ( x ) ⟩ = − φ ′ ( 1 ) \langle \delta'(x-1), \varphi(x) \rangle = -\langle \delta(x-1), \varphi'(x) \rangle = -\varphi'(1) δ(x1),φ(x)⟩=δ(x1),φ(x)⟩=φ(1)

这里的 − φ ′ ( 1 ) -\varphi'(1) φ(1) 表明, δ ′ ( x − 1 ) \delta'(x-1) δ(x1) 的作用是评估 φ ( x ) \varphi(x) φ(x) x = 1 x = 1 x=1 处的导数,并取相反数。

结论

这种性质体现了 Dirac delta 函数及其导数的基本特性:Dirac delta 函数定位一个点的效果,而它的导数则关注该点处函数的变化率(即斜率或导数)。通过平移和导数操作,我们能够精确控制这些效果在不同位置的表现。因此, ⟨ δ ′ ( x − 1 ) , φ ( x ) ⟩ = − φ ′ ( 1 ) \langle \delta'(x-1), \varphi(x) \rangle = -\varphi'(1) δ(x1),φ(x)⟩=φ(1) 描述了 δ ′ ( x − 1 ) \delta'(x-1) δ(x1) 作用于测试函数 φ ( x ) \varphi(x) φ(x) 的效果,即在 x = 1 x = 1 x=1 处求 φ ( x ) \varphi(x) φ(x) 的导数并取负值。

  • 25
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值