模型解释

又从kaggle离学到一个新的知识点,下面代码是对模型特征重要性的解释

import eli5 
from eli5.sklearn import PermutationImportance

#for SHAP values
import shap 
from pdpbox import pdp, info_plots #for partial plots

perm = PermutationImportance(model, random_state = 0).fit(x_test, y_test)
eli5.show_weights(perm, feature_names = x_test.columns.tolist())

out:

 

部分特征依赖图

base_features = data.columns.values.tolist()

feat_name = 'num_major_vessels'
pdp_dist = pdp.pdp_isolate(model=model, dataset=x_test, model_features = base_features, feature = feat_name)

pdp.pdp_plot(pdp_dist, feat_name)
plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值