SLAM学习 | 小觅相机的图像与IMU时间戳对齐分析
概要: 接前文——SLAM学习 | 使用小觅相机MYNTEYE-S1030收集数据集,得到了图像与IMU数据之后,由于两者采样频率相差很大,所以首先需要分析他们各自的时间戳对齐情况。相机官网上说已经通过相关芯片进行了硬件对齐,且误差保持在5ms以内,那就正好来验证一下吧。
关键字: 小觅相机; 视觉-IMU时间戳对齐
1 在时间轴上标注时间戳
在前文中提到,一次采集可以得到5种数据,分别是4种图像数据——深度图depth、差分图disparity、光学左图left、光学右图right和1种运动数据——IMU数据,如图1所示:

其中4种图像的时间戳相同,因此只需比较一种图像,如left的时间戳与IMU时间戳。时间戳数据如下例所示:
2047232990
数据精确到微秒,当前时刻是2047秒232990微秒。
在时间轴上分别标识left与IMU的时间戳,如图2所示:

其中红点、蓝点分别表示图像、IMU时间戳。从图中大致可以看出,每两个红点之间存在8个蓝点间隔,这与预设的图像帧率25fps、IMU频率200Hz吻合。
2 时间戳对齐误差
为了更进一步分析两者对齐情况,对每个图像时间戳,从IMU时间戳中筛选出最接近的那一个,并计算两者误差,得到如图3所示的误差曲线:

由图3所示,图像与IMU时间戳误差大致在0-2500微秒区间内呈周期性波动,最大误差也仅有2.5毫秒左右,这对40毫秒的图像采样间隔来说一般是可以接受的。
在同样的图像帧率、IMU频率(25fps,200Hz)下再做两组实验,得到的结果如图4(1)(2)所示,结论一致。


3 通过增加IMU频率减小对齐误差
更进一步,如果对时间戳对齐误差容忍度更低,则可以通过增加IMU频率实现。保持图像帧率为25fps,将IMU帧率提高到50Hz,则每帧图像与其时间最接近的IMU时间戳之间的误差如图5所示:

可以看到,当IMU频率提高到500Hz时,图像-IMU时间戳对齐误差的波动区间由原来的0-2500us降低到0-1000us。
一般地,设IMU频率为f(单位:Hz),则图像-IMU时间戳对齐误差的波动上限UP=1000/(2*f)(单位:毫秒),波动区间为[0, UP]。