【Pinocchio】加载和处理一个URDF模型文件,并进行正向运动学计算

Python

这段代码主要使用 pinocchio 库来加载和处理一个URDF模型文件,并进行正向运动学计算。代码的主要步骤包括:

  1. 导入必要的模块和库,如 pathlibsys 和 pinocchio

  2. 定义一个路径,指向 Pinocchio 模型所在的目录。

  3. 根据传入的参数或默认路径,设置 URDF 文件的路径。

  4. 加载URDF模型,并打印模型名称。

  5. 创建一个数据对象,用于存储算法需要的数据。

  6. 生成一个随机配置,并打印该配置。

  7. 对运动学树进行正向运动学计算。

  8. 打印运动学树中每个关节的位置。

这样做的目的是为了在模型中生成并计算机器人各个关节的位置和姿态。

from pathlib import Path  # 从pathlib模块中导入Path类from sys import argv  # 从sys模块中导入argv变量
import pinocchio  # 导入pinocchio库
# 这个路径指向Pinocchio源代码目录,但你可以在这里定义你自己的目录pinocchio_model_dir = Path(__file__).parent.parent / "models"
# 你应该在这里设置你自己的URDF文件,或者将其作为这个例子的参数传递urdf_filename = (    pinocchio_model_dir / "example-robot-data/robots/ur_description/urdf/ur5_robot.urdf"    if len(argv) < 2  # 如果argv长度小于2    else argv[1]  # 否则使用传入的参数)
# 加载urdf模型model = pinocchio.buildModelFromUrdf(urdf_filename)print("model name: " + model.name)  # 打印模型名称
# 创建算法所需的数据data = model.createData()
# 生成一个随机配置q = pinocchio.randomConfiguration(model)print(f"q: {q.T}")  # 打印随机配置
# 在运动学树上进行正向运动学pinocchio.forwardKinematics(model, data, q)
# 打印运动学树中每个关节的位置for name, oMi in zip(model.names, data.oMi):    print("{:<24} : {: .2f} {: .2f} {: .2f}".format(name, *oMi.translation.T.flat))

C++

这段代码主要使用 pinocchio 库来加载和处理一个URDF模型文件,并进行正向运动学计算。代码的主要步骤包括:

  1. 导入必要的头文件,如 pinocchio 的URDF解析器、关节配置算法和运动学算法,以及标准输入输出流。

  2. 定义一个路径,指向 Pinocchio 模型所在的目录。如果未定义路径,则使用默认路径。

  3. 根据传入的参数或默认路径,设置 URDF 文件的路径。

  4. 加载URDF模型,并打印模型名称。

  5. 创建一个数据对象,用于存储算法需要的数据。

  6. 生成一个随机配置,并打印该配置。

  7. 对运动学树进行正向运动学计算。

  8. 打印运动学树中每个关节的位置。

这样做的目的是为了在模型中生成并计算机器人各个关节的位置和姿态。

#include "pinocchio/parsers/urdf.hpp"  // 包含pinocchio的urdf解析器头文件
#include "pinocchio/algorithm/joint-configuration.hpp"  // 包含关节配置算法头文件#include "pinocchio/algorithm/kinematics.hpp"  // 包含运动学算法头文件
#include <iostream>  // 包含标准输入输出流头文件
// PINOCCHIO_MODEL_DIR 是由CMake定义的,但你可以在这里定义你自己的目录#ifndef PINOCCHIO_MODEL_DIR  #define PINOCCHIO_MODEL_DIR "path_to_the_model_dir"  // 如果未定义PINOCCHIO_MODEL_DIR,则定义其路径#endif
int main(int argc, char ** argv)  // 主函数,argc和argv用于传递命令行参数{  using namespace pinocchio;  // 使用pinocchio命名空间
  // 你应该在这里设置你自己的URDF文件,或者将其作为这个例子的参数传递  const std::string urdf_filename =    (argc <= 1) ? PINOCCHIO_MODEL_DIR  // 如果命令行参数个数小于等于1                    + std::string("/example-robot-data/robots/ur_description/urdf/ur5_robot.urdf")  // 使用默认的URDF文件路径                : argv[1];  // 否则使用传入的第一个参数作为URDF文件路径
  // 加载urdf模型  Model model;  pinocchio::urdf::buildModel(urdf_filename, model);  // 从URDF文件中构建模型  std::cout << "model name: " << model.name << std::endl;  // 输出模型名称
  // 创建算法所需的数据  Data data(model);
  // 生成一个随机配置  Eigen::VectorXd q = randomConfiguration(model);  // 随机生成一个关节配置  std::cout << "q: " << q.transpose() << std::endl;  // 输出关节配置
  // 在运动学树上进行正向运动学  forwardKinematics(model, data, q);
  // 打印运动学树中每个关节的位置  for (JointIndex joint_id = 0; joint_id < (JointIndex)model.njoints; ++joint_id)    std::cout << std::setw(24) << std::left << model.names[joint_id] << ": " << std::fixed              << std::setprecision(2) << data.oMi[joint_id].translation().transpose() << std::endl;}
### Pinocchio 中正运动学的实现与应用 Pinocchio 是一种高效的 Python/C++ 库,专为机器人动力学分析控制设计。它提供了多种功能来计算机器人的运动学动力学特性,其中包括前向运动学 (forward kinematics)[^1]。 #### 前向运动学简介 前向运动学是指通过给定关节角度或位置,计算末端执行器或其他指定连杆的空间姿态的过程。在 Pinocchio 中,这一过程可以通过调用特定函数完成,这些函数会基于内部优化算法高效地更新整个机械臂的姿态矩阵。 #### 使用方法 以下是使用 Pinocchio 实现前向运动学的一个典型例子: ```python import pinocchio as pin from pinocchio.robot_wrapper import RobotWrapper # 加载URDF模型 model_path = "./path_to_urdf" urdf_model = "robot.urdf" # 创建RobotWrapper对象 robot = RobotWrapper.BuildFromURDF(urdf_model, model_path) # 初始化数据结构 data = robot.data # 设置关节配置 q (可以是任意合法的关节角) q = pin.neutral(robot.model) # 或者自定义 q 如 [0., 1., ...] # 计算前向运动学 pin.forwardKinematics(robot.model, data, q) # 获取某个连杆的世界坐标系下的变换矩阵 frame_id = robot.model.getFrameId("end_effector_frame") # 替换为目标帧名称 placement = pin.updateFramePlacement(robot.model, data, frame_id) print(f"End effector placement:\n{placement}") ``` 上述代码展示了如何加载 URDF 文件设置初始关节状态 `q` 来计算前向运动学的结果。最终得到的是目标连杆相对于世界坐标系的位置方向信息。 #### 性能特点 Pinocchio 的核心优势在于其高度优化的数据结构以及针对稀疏雅可比矩阵的操作支持。这使得即使对于复杂的多自由度机器人也能快速求解运动学问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值