以下内容梳理了潜在结果框架的常用算法和原理,并依据相关论文推理,结合案例做了代码实现:
潜在结果框架:因果推断世界里的平行时空
Uplift Model:S-Learner类增益模型实战
Uplift Model:T-Learner类增益模型实战
Class Transformation Model增益模型
Uplift Tree Model:增益树模型原理
Uplift模型评估指标AUUC
潜在结果框架
潜在因果框架(Potential Outcome Framework,POF)是由Donald Bruce Rubin提出的一种针对观测数据进行因果推断的框架,也被称为鲁宾因果模型(Rubin Causal Model)。“潜在结果”指的是在特定干预下,个体可能产生的结果。叫“潜在结果”的原因是该结果并不一定能观测到,它只是选择是否接受干预处理后对应的一个潜在数值。而作出是否接受干预处理的选择后,观测不到的结果称为“反事实结果”。叫“反事实结果”的原因是该结果无法观测到,并不是实际发生的。
比如,营销场景下的策略干预效果评估中,对于观测数据中的某个个体i,对应两个潜在结果: 接受干预处理的转化概率Y1i 和不接受干预处理的转化概率Y0i:如果个体i选择接受干预处理T=1,则不接受干预处理的转化概率Y0i就是反事实结果。如果个体i选择不接受干预处理T=0,则接受干预处理的转化概率Y1i就是反事实结果。
公众号原文参考:潜在结果框架:因果推断世界里的平行时空
ITE/ATE/ATT/ATU/CATE
个体i是否接受干预处理的转化概率差值Y1i-Y0i,叫做个体i的个体处理效应(individual treatment effec,ITE)。ITE是无法计算的,因为存在反事实结果。
大多数情况下,因为根据个体不同,对应的个体处理效应也是有所差别的,无法把一个个体的个体处理效应推广到其余个体上,相对稳定的指标是平均处理效应(Average treatment effect,ATE),即一个群体所有个体的个体处理效应取平均值,即ATE=E(Y1i-Y0i)。
可以对平均处理效应中的个体进一步细分为两组:(1.)实际接受干预处理组的个体T=1,(2)实际不接受干预处理组的个体T=0。
将第(1.)组个体的平均处理效应称为处理组的平均处理效应(Average treatment effect of the treated group, ATT),ATT=E(Y1i-Y0i|T=1)。
而第(2.)组个体的平均处理效应称为对照组的平均处理效应(Average treatment effect of the untreated group,ATU), ATU=E(Y1i-Y0i|T=0)。
比如,现在有2w个电商平台的活跃用户,运营人员要在年底搞促销活动,想提前测试某新活动方案P的对产品M的转化效果,就随机抽取了其中1w个用户(组A),对这部分用户使用了新活动方案P的干预,剩下的1w个用户(组B)维持原运营方案不变。无论用户是否接受干预,都对应有两个潜在结果:
1.接受干预的潜在结果Y1i,即用新活动方案P后,用户转化效果是多少;
2.不接受干预的潜在结果Y0i,即用原运营方案的用户转化效果是多少。
注意,个体i接受干预的潜在结果Y1i可以取任何可能的值,在二分类情况下,Y1i=0表示个体i接受干预后,没有发生期望的结果;Y1i=1表示个体i接受干预后,发生了期望的结果。实验一段时间后,有下表的观测数据:
上表中,每个用户的两个潜在结果差值,就是「个体处理效应」:
ITE=Y1i-Y0i
将2w个用户的个体处理效应求平均值,就是「平均处理效应」:
ATE=E(Y1i-Y0i)
按照是否接受干预分组,对于T=1接受干预的用户的平均处理效应,就是「处理组平均处理效应」:
ATT=E(Y1i-Y0i|T=1)
对于T=0不接受干预的用户的平均处理效应,就是「对照组平均处理效应」:
ATU=E(Y1i-Y0i|T=0)
一般,关注接受干预的用户群体的平均处理效应ATT。潜在结果框架理论很合理,但因为ITE和ATE计算公式里的两个潜在结果不能同时被观测到,总有一个反事实结果是观测不到的,解决办法是用可观测的数据代替观测不到的数据,PSM模型就是解决这类问题的,后续会写一篇有关PSM模型的文章,这里先不展开介绍了。
更多内容欢迎关注微信公众号:瑞行AI