一、背景介绍
最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。
二、训练模型的步骤
1.拍照获取训练图片(训练图片越多越好)
2.将图片进行处理获得数据集:
给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。
深度相机识别物体——实现数据集准备与数据集分割-CSDN博客
3.训练模型:
用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。
模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:
# 模型训练时的配置文件,说明了文件训练的地址和
# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2