利用YOLOv8识别自定义模型

一、背景介绍

        最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体——实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值