电容搞搞”振“,PDN有帮衬

电容世界里的‘振’:电容、电阻与电感的阻抗奥秘
文章探讨了电容模型中的电容、电阻和电感如何影响阻抗曲线,特别是电容的自谐振现象以及不同参数如何决定阻抗的高低。作者强调合理调整电容的重要性,并指出电感参数的选择也需要考虑。

高速先生成员--姜杰

聊电容,不能只聊电容,还要聊电阻和电感。看似很简单,其实,一点都不难。

275-01.png

因为去耦电容的模型基本都可以用下面三种元素的简单组合来表示。

 

275-02.png

理想电容C的阻抗是随频率的增加而逐渐减小的一条斜线,实际上由于电容中等效寄生电阻(ESR)和等效寄生电感(ESL)的搅局,问题开始变得复杂。不同的电容自谐振频点不同,谐振点阻抗各异,滤波频段也有区别……

看似很复杂,其实,很简单。

275-03.png

电容搞搞“振”,第一“振”来自同一电容ESR\ESL\C的串联谐振(也叫做自谐振)。 

275-04.png

先来看看电容模型的各参数是如何影响阻抗曲线的。对于电容容值C,不难发现,相同ESR和ESL的情况下,随着容值的增加,自谐振频点向低频移动,同时,滤波频段也会加宽。

 

275-05.png

接下来再看哈ESL的影响。在保持其它参数不变的情况下,随着ESL的增加,自谐振频点向低频移动,同时,滤波频段也会随着变小。

 

275-06.png

需要注意的是,ESR的情况会复杂一些,因为它是一个频变的参数。

275-07.png

ESR随频率变化的趋势与该电容的阻抗变化一致。

275-08.png

不过,为了简化问题,我们这里先把ESR作为一个常数,它的变化对阻抗曲线的影响如下图。

275-09.png

对比上面几个图,我们会发现一个有趣的现象,那就是电容自谐振频点的ESR基本决定了阻抗的最小值。

275-10.png

以上只是单一容值电容的阻抗曲线。了解PDN阻抗曲线的童鞋会发现常见情况并非如此,而是像人生一样总是起起伏伏。

 

275-11.png

其实,这是容值不同的电容并联谐振的结果,也是本文要说的第二“振”。

275-12.png

分析起来也很简单,当一个电容的感性区遇上另一个电容的容性区,谐振峰就出现了。

 

275-13.png

综合考虑VRM和芯片内去耦,如果说第一“振”决定了阻抗曲线的波谷,第二“振”通常确定了阻抗曲线的波峰。

电容种类这么多,原理图设计或者备料出错的机会大大增加,作为一名设计攻城狮,希望板子简单点,精简一些电容,这个要求并不过分吧? 

 

275-14.png

说干就干,在前文三种电容并联的基础上,去掉100nF的电容,看看会怎样。

275-15.png

这么看,除了在100nF的去耦频段出现一个谐振峰,好像也没什么问题,毕竟,这个峰值也没那么高。我们继续把VRM和芯片内去耦模型加上,看全链路的情况。

275-16.png

See?高速先生一直强调的调整电容要合理真不是吓唬你。

 

275-17.png

当然,这个例子只是为了凸显电容影响而挑选的极端情况。

电容不是老虎屁股,一点摸不得,具体种类和数量可以通过仿真进行优化,是增是减,It depends!

对于电容相关的电感参数,除了电容自身的ESL,还需要关注什么?

内容概要:本文围绕基于机器学习的网络入侵检测展开研究,提出采用随机森林(Random Forest, RF)模型实现对网络流量中异常行为的高效识别。系统以KDD 99公开数据集为基础,通过数据预处理、特征提取(如包长、协议类型、源IP、目标端口等)、模型训练与优化等步骤,构建随机森林分类模型。研究强调该算法在检测准确率、泛化能力及抗噪性方面的优势,测试结果显示模型准确率达98.65%,具备低误报率和高实时性。系统还集成Flask框架与Vue技术实现前后端交互及可视化展示,支持攻击类型统计、地理分布分析等功能,并通过单元测试、性能测试和安全测试验证系统稳定性与可靠性。; 适合人群:具备一定机器学习基础和Python编程能力的本科及以上学生、网络安全研究人员或初级开发人员。; 使用场景及目标:①应用于高校科研或毕业设计,深入理解机器学习在网络入侵检测中的实际应用;②为中小型组织提供低成本、高效的入侵检测解决方案原型;③学习如何将机器学习模型与Web系统集成,实现从数据处理到可视化展示的完整流程。; 阅读建议:建议结合代码实践,重点关注数据预处理、特征工程与随机森林模型调优部分,同时可拓展对比其他算法(如SVM、神经网络)在相同数据集上的表现,以深化对模型选型的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值