从阿里腾讯看AI大模型:现状、应用与未来蓝图

一、巨头入局,大模型赛道风云骤起

当我们还在惊叹于 OpenAI 的 ChatGPT 带来的 AI 革命时,国内的科技巨头们早已在大模型领域展开了激烈角逐。阿里的通义千问、腾讯的混元大模型,如同两颗重磅炸弹,在大模型赛道上激起千层浪。

img

图片来源:IT之家

2023 年,阿里正式发布通义千问,迅速在自然语言处理、图像生成等多个领域崭露头角,吸引了无数开发者和企业的目光。随后,腾讯混元大模型也惊艳亮相,凭借其强大的语言理解和生成能力,在智能客服、内容创作等场景中展现出独特优势。这两大巨头的入局,无疑为大模型赛道注入了强大的活力,也让人们对 AI 的未来充满了更多期待。

二、AI 大模型发展现状剖析

1、市场规模与增长趋势

img

图片来源:头豹公众号

AI 大模型市场近年来呈现出爆发式增长,据《2024 年中国行业大模型市场报告》显示,2023 年中国行业大模型市场规模达到 105 亿元,预计 2024 年市场规模可达到 165 亿元,同比增长 57%,到 2028 年市场规模有望达到 624 亿元。艾媒咨询发布的报告也指出,2024 年中国 AI 大模型市场规模约为 294.16 亿元,预计 2026 年将突破 700 亿元,中国 AI 大模型行业正处于爆发式发展阶段。这一增长趋势不仅反映了技术的快速进步,也显示出各行业对 AI 大模型的强烈需求。随着大模型技术在更多领域的应用和渗透,市场规模有望持续扩大,成为推动经济发展的新引擎。

2、技术进展与突破

在技术层面,AI 大模型取得了显著进展。模型性能不断提升,参数规模持续扩大,使得模型能够处理更复杂的任务和数据。以 GPT-4o 为例,它的文本、推理、编码能力达到了前一代 GPT-4 Turbo 的水平,速度却是其两倍,成本却只有一半。同时,技术路线也呈现出多元化趋势,不再局限于算力堆叠,强化学习、知识计算、符号推理、类脑计算等新型路径不断涌现。多模态整合能力也在不断增强,通过整合文本、图像、语音等多种形式,多模态模型在医疗、自动驾驶等领域中能够综合分析多种数据源,提高决策的准确性和可靠性。例如,OpenAI 推出的 SORA 可以生成 60 秒一镜到底的视频,GPT-4o 可以协同视频语音在多个场景应用,展现出强大的多模态交互能力。

3、竞争格局与主要参与者

当前,AI 大模型领域竞争激烈,巨头与初创企业纷纷入局。阿里凭借通义千问,在电商、金融等领域发挥数据和场景优势,为企业提供智能客服、智能推荐等解决方案,同时通过阿里云将大模型能力输出,助力企业数字化转型。腾讯混元大模型则依托其庞大的用户基础和多元化的业务场景,在社交、游戏、广告等领域进行应用探索,如在微信、腾讯游戏中融入混元大模型,提升用户体验。除了阿里和腾讯,百度的文心大模型在自然语言处理和知识图谱方面表现出色,在能源、金融、教育等行业有广泛应用;字节跳动虽然在大模型投资方面较为保守,但在内部积极探索相关技术,在 C 端应用方面展现出独特优势。此外,众多初创企业也在细分领域崭露头角,如智谱 AI、Minmax 等,它们凭借创新的技术和灵活的市场策略,在大模型市场中分得一杯羹。

三、AI 大模型应用领域全景展示

img

图片来源于网络

1、日常生活场景

在日常生活中,AI 大模型的身影无处不在。智能客服就是一个典型的例子,许多电商平台和在线服务提供商都采用了基于大模型的智能客服系统。当你在淘宝购物时,遇到问题咨询客服,很可能就是阿里通义千问驱动的智能客服在为你解答,它能够快速理解你的问题,并提供准确的回答,大大提高了客服效率和用户满意度。

内容创作领域,大模型也展现出了强大的实力。无论是写文章、诗歌还是代码,大模型都能提供灵感和帮助。不少自媒体博主已经开始使用大模型辅助创作,通过输入关键词和主题,大模型可以生成初稿,博主再在此基础上进行修改和完善,大大节省了创作时间。

个性化推荐也是大模型在日常生活中的重要应用。以腾讯视频为例,它利用混元大模型分析用户的观看历史、偏好等数据,为用户推荐个性化的视频内容,让用户更容易发现自己感兴趣的节目。

2、行业深度应用

在医疗领域,AI 大模型正在助力医生进行疾病诊断和治疗方案制定。例如,百度灵医大模型凭借强大的数据处理能力,已经嵌入到 200 多家医疗机构中,能够协助医生分析医学影像、检测疾病特征,提高诊断的准确性和效率。医联推出的 MedGPT 大模型,基于 Transformer 架构,拥有高达 100B(千亿级)的参数规模,致力于实现从疾病预防到康复的全流程智能化诊疗。通过对患者的症状、病史等数据进行分析,MedGPT 可以为医生提供诊断建议和治疗方案参考,帮助医生做出更准确的决策。

金融行业同样离不开 AI 大模型的支持。在贷款审批与风险管理方面,AI 大模型通过深度分析借款人的信用记录、财务状况等数据,能够快速准确地评估借款人的信用状况,实现贷款的快速审批和智能风险管理。一些银行已经开始运用 AI 大模型进行贷款审批,大大提高了审批效率,降低了不良贷款的风险。在投资决策与资产配置中,AI 大模型可以通过对海量金融数据的挖掘和分析,为投资者提供精准的投资建议和资产配置方案,帮助投资者把握市场趋势,实现资产的保值增值。

教育行业,AI 大模型为个性化学习提供了可能。通过分析学生的学习数据,大模型可以了解每个学生的学习进度、知识掌握情况和学习风格,为学生提供个性化的学习计划和辅导。一些在线教育平台已经利用大模型开发了智能辅导系统,能够实时解答学生的问题,帮助学生更好地学习。

工业制造领域,AI 大模型可以用于优化生产流程、预测设备故障等。通过对生产数据的实时分析,大模型可以发现生产过程中的潜在问题,并提出优化建议,提高生产效率和产品质量。同时,利用大模型对设备运行数据进行监测和分析,能够提前预测设备故障,及时进行维护,避免生产中断。

四、AI 大模型未来趋势展望

img

图片来源于网络

1、技术发展方向

未来,AI 大模型的性能有望进一步提升,参数规模不断扩大,训练效率持续提高。多模态融合也将更加深入,模型能够更自然地处理和理解多种类型的数据,实现更加智能化的交互。以图像和文本的融合为例,未来的多模态模型不仅能够实现图像描述、图像生成文本等基本功能,还能够根据文本内容生成与之匹配的高质量图像,甚至实现跨模态的推理和决策。同时,可解释性增强将成为 AI 大模型发展的重要方向,研究人员将致力于开发新的技术和方法,使模型的决策过程和输出结果更加透明和可理解,从而提高模型的可信度和可靠性。

2、商业应用拓展

随着技术的不断成熟,AI 大模型将催生出更多新的商业模式。例如,基于大模型的软件即服务(SaaS)模式将得到更广泛的应用,企业可以通过订阅的方式使用大模型服务,降低研发和运营成本。平台化运营也将成为趋势,大模型平台将汇聚各种应用和服务,为用户提供一站式的解决方案。在行业应用方面,AI 大模型将在更多领域实现深度融合,推动各行业的数字化转型和创新发展。例如,在农业领域,大模型可以用于精准农业,通过分析土壤、气候、作物生长等数据,实现智能灌溉、施肥和病虫害防治;在能源领域,大模型可以优化能源生产和分配,提高能源利用效率。市场规模也将持续扩大,根据市场研究机构的预测,未来几年全球 AI 大模型市场规模将保持高速增长,成为科技领域的重要增长点。

3、社会影响与挑战

AI 大模型的发展将对就业结构产生深远影响,一些重复性、规律性的工作可能被自动化和智能化的系统所取代,但同时也将创造出更多新的就业机会,如 AI 训练师、数据标注员、算法工程师等。为了应对这一挑战,教育和培训体系需要进行相应的调整,加强对人工智能相关知识和技能的培养,提高劳动者的就业竞争力。伦理道德和数据安全也是 AI 大模型发展面临的重要挑战。模型的决策可能受到数据偏差和算法偏见的影响,导致不公平的结果。数据泄露和滥用也可能对个人隐私和社会安全造成威胁。因此,需要建立健全相关的法律法规和伦理准则,加强对 AI 大模型的监管和治理,确保其在安全、可靠、伦理的框架内发展。

总结与思考

AI 大模型的发展如同一股汹涌澎湃的浪潮,席卷了全球科技领域。从巨头纷纷入局的激烈竞争,到市场规模的爆发式增长;从技术的不断突破,到应用领域的广泛拓展,AI 大模型正以前所未有的速度改变着我们的生活和工作方式。作为科技领域的重要变革力量,AI 大模型的未来充满无限可能。让我们保持关注,积极参与,共同见证 AI 大模型时代的辉煌!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值