YOLOv8改进:利用MobileNetV4增强主干网络

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8改进:利用MobileNetV4增强主干网络

简介

YOLOv8作为目前最先进的目标检测算法之一,在性能和精度方面都取得了显著进步。然而,其主干网络结构较为复杂,在部署于移动端或嵌入式设备时会遇到性能瓶颈。为了解决这一问题,本文提出了一种利用MobileNetV4增强YOLOv8主干网络的方法,以提升模型的轻量性和精度。

原理详解

MobileNetV4网络架构

MobileNetV4是Google开发的轻量级移动端网络架构,其核心是UIB(Universal Inverted Bottleneck)搜索块。该模块融合了倒置瓶颈(IB)、ConvNext、前馈网络(FFN)以及新型Extra Depthwise(ExtraDW)变体等结构,在保持模型精度的同时可以有效降低计算量和参数量。

增强YOLOv8主干网络

将MobileNetV4的UIB模块替换YOLOv8主干网络中的部分模块,可以显著降低模型复杂度&

### MobileNetV3与YOLOv8的集成方法 为了使MobileNetV3作为YOLOv8的目标检测网络中的骨干网,主要工作集中在模型架构调整上。具体而言,在YOLOv8框架内引入MobileNetV3结构来替代默认使用的CSPDarknet53或其他预设骨架[^2]。 #### 修改配置文件 首先需要编辑YOLOv8对应的`.yaml`配置文档,指定采用MobileNetV3作为新的backbone层: ```yaml # yolov8_custom.yaml example configuration file with mobilenetv3 backbone nc: 80 # number of classes depth_multiple: 0.33 width_multiple: 0.5 backbone: - [focus, [64, 3]] - [mobilenet_v3_large, []] # Inserting Mobilenet V3 large variant here ``` 上述代码片段展示了如何定义一个新的配置文件用于训练基于MobileNetV3的YOLOv8版本。这里选择了较大的MobileNetV3变体(`mobilenet_v3_large`)以保持一定的精度水平。 #### 替换Backbone模块 接着要修改YOLOv8源码中负责构建基础特征提取器的部分,使得能够加载并初始化MobileNetV3权重参数。这通常涉及到对`models/yolo.py`或者其他相关脚本内的类定义做适当改动,确保能正确实例化MobileNetV3对象并与后续neck和head组件无缝对接。 ```python from models.common import Conv, SPPF, BottleneckCSP import torchvision.models as models class YOLOv8Custom(nn.Module): def __init__(self): super().__init__() self.backbone = models.mobilenet_v3_large(pretrained=True).features ... # Other layers like neck and head remain unchanged. ``` 这段Python代码说明了怎样创建自定义YOLOv8类,其中包含了来自PyTorch官方库的预训练MobileNetV3大型版作为主干部分。 通过以上两步操作即可完成基本的功能移植,不过实际应用时还需要考虑更多细节优化以及性能调优等问题。值得注意的是,由于两者的设计初衷不同,直接替换可能会带来一些兼容性挑战,因此建议深入研究两个模型的具体实现机制后再着手实施改造计划。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值