图像超分辨率:使用 SRCNN 和 ESPCN 模型在 DIV2K 数据集上实现
简介
图像超分辨率(Super-Resolution, SR)是计算机视觉中的一项重要任务,旨在将低分辨率图像转换为高分辨率图像。这在医学影像、卫星照片、视频流质量增强等领域有广泛应用。SRCNN(Super-Resolution Convolutional Neural Network)和 ESPCN(Efficient Sub-Pixel Convolutional Neural Network)是常用的深度学习模型,用于解决图像超分辨率问题。
应用场景
- 医学成像:提高CT、MRI等医疗图像的分辨率以辅助诊断。
- 卫星成像:增强卫星图像细节,提高地理信息系统的精度。
- 视频流增强:提升视频通话或流媒体播放的清晰度。
- 安全监控:提高监控视频的分辨率便于识别细节。
原理解释
SRCNN
SRCNN由三层卷积网络组成: