基于C3D-LSTM的人群异常行为识别算法介绍
C3D-LSTM是一种结合了3D卷积神经网络(C3D)和长短期记忆网络(LSTM)的深度学习模型,用于视频中的异常行为识别。C3D用于提取视频中的时空特征,而LSTM用于建模时间序列依赖关系,从而实现对异常行为的检测。
应用场景
- 智能监控:用于公共场所的异常行为检测,如打架、跌倒等。
- 交通管理:用于检测交通中的异常事件,如交通事故、违章行为。
- 医疗监护:用于检测病人的异常行为,如突发疾病或摔倒。
- 工业安全:用于检测工厂中的危险行为,如违规操作或设备故障。
原理解释
C3D-LSTM模型的核心思想是通过C3D提取视频帧的时空特征,并通过LSTM建模时间序列依赖关系,从而识别异常行为。
-
C3D特征提取:
- C3D是一种3D卷积神经网络,能够同时提取视频的空间和时间特征。
- 输入为视频帧序列,输出为时空特征向量。