【matlab】 基于C3D-LSTM的人群异常行为识别算法

基于C3D-LSTM的人群异常行为识别算法介绍

C3D-LSTM是一种结合了3D卷积神经网络(C3D)和长短期记忆网络(LSTM)的深度学习模型,用于视频中的异常行为识别。C3D用于提取视频中的时空特征,而LSTM用于建模时间序列依赖关系,从而实现对异常行为的检测。

应用场景
  1. 智能监控:用于公共场所的异常行为检测,如打架、跌倒等。
  2. 交通管理:用于检测交通中的异常事件,如交通事故、违章行为。
  3. 医疗监护:用于检测病人的异常行为,如突发疾病或摔倒。
  4. 工业安全:用于检测工厂中的危险行为,如违规操作或设备故障。

原理解释

C3D-LSTM模型的核心思想是通过C3D提取视频帧的时空特征,并通过LSTM建模时间序列依赖关系,从而识别异常行为。

  1. C3D特征提取

    • C3D是一种3D卷积神经网络,能够同时提取视频的空间和时间特征。
    • 输入为视频帧序列,输出为时空特征向量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值