详细介绍下Z得分和标准正态分布

Z得分详解

引言

在统计学中,Z得分(Z-Score)是一种衡量单个数据点与数据集平均值之间差异的标准化指标。通过将原始数据转换为Z得分,我们可以更方便地比较不同数据集或不同测量单位的数据,识别异常值,进行假设检验等。本文将从多个角度详细介绍Z得分,包括其定义、计算方法、应用场景、优缺点以及与其他统计概念的关系。

一、Z得分的定义

Z得分,也称为标准分数,是描述一个数据点偏离其所属数据集平均值的距离,单位为标准差。具体来说,Z得分表示数据点距离均值的多少个标准差。公式如下:

Z = ( X − μ ) σ Z = \frac{(X - \mu)}{\sigma} Z=σ(Xμ)

其中:

  • ( X ) 是单个数据点的值。
  • ( \mu ) 是数据集的平均值。
  • ( \sigma ) 是数据集的标准差。

通过这个公式,Z得分将原始数据转换为一个无量纲的数值,使得不同数据集之间的比较成为可能。

二、Z得分的计算方法

1. 基本公式

如上所述,计算Z得分的基本公式为:

Z = ( X − μ ) σ Z = \frac{(X - \mu)}{\sigma} Z=σ(Xμ)

2. 计算步骤

具体计算步骤如下:

  1. 计算平均值 (( \mu ))
    将所有数据点相加,然后除以数据点的总数。

    μ = ∑ i = 1 N X i N \mu = \frac{\sum_{i=1}^{N} X_i}{N} μ=Ni=1NXi

  2. 计算标准差 (( \sigma ))
    先计算方差,再开平方得标准差。

    σ = ∑ i = 1 N ( X i − μ ) 2 N \sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} σ=Ni=1N(Xiμ)2

  3. 计算Z得分 (( Z ))
    使用基本公式,将每个数据点转换为对应的Z得分。

3. 示例计算

假设有以下数据集:[ 10, 12, 23, 23, 16, 23, 21, 16 ]

  1. 计算平均值

    μ = 10 + 12 + 23 + 23 + 16 + 23 + 21 + 16 8 = 144 8 = 18 \mu = \frac{10 + 12 + 23 + 23 + 16 + 23 + 21 + 16}{8} = \frac{144}{8} = 18

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值