一个矩阵的行数和列数可能不同,为什么它的行秩和列秩始终相同

一个矩阵的行数和列数可能不同,为什么它的行秩和列秩始终相同

flyfish

通俗理解矩阵的秩
通俗理解低秩分解
Python 将矩阵转换为行最简形式 (Row Echelon Form, REF)和列最简形式 (Column Echelon Form, CEF)
线性无关 :一组向量是线性无关的,意味着其中的任何一个向量都不能通过其他向量的线性组合得到。因此,矩阵的秩反映了有多少行或列是独立的,不能用其他行或列的线性组合表示。

计算行秩列秩 的步骤,背后的原理是基于线性代数中的初等变换 ,具体来说,就是通过行变换列变换 来简化矩阵,找到矩阵中线性无关 的行和列。

初等行变换可以是如下操作:
交换行:交换矩阵中的两行。
将某行乘以非零常数 :不会改变行的独立性。
将某行加上另一行的倍数

矩阵的秩 表示矩阵中“线性无关”行或列的最大数量,也就是该矩阵能够提供多少“独立的信息”。

下面的简化过程可以叫高斯消元法
高斯消元法的核心思想是通过初等行变换(例如交换行、给某行乘以一个非零常数、给一行加上另一行的倍数),逐步将矩阵的下三角部分化为零,最后得到一个上三角矩阵或阶梯形矩阵。

这个方法的目标是让矩阵变成一种上三角形式,即矩阵的下方部分为零,而上方部分则保留了非零元素,这种形式让我们可以清晰地看到矩阵中的线性无关行。

假设矩阵 A A A 为: A = ( 1 2 3 4 5 6 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} A= 135246

一、 计算行秩

使用初等行变换将矩阵简化** 行秩可以通过将矩阵化为行简化阶梯形矩阵 (也叫行最简形式 )来计算。在这个过程中,我们使用初等行变换使得矩阵尽可能接近上三角形结构,最后得到的矩阵非零行的数量就是行秩。

行最简形式 (Row Echelon Form, REF)
通过初等行变换将矩阵化为行最简形式。给定矩阵:
A = [ 1 2 3 4 5 6 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} A= 135246

步骤 1:保持第一个主元 1 不变,消去其他行的第一列元素。

使用第一行的主元 1,消去第二行的第一个元素 3 R 2 = R 2 − 3 × R 1 R_2 = R_2 - 3 \times R_1 R2=R23×R1

计算:
[ 3 4 ] − 3 × [ 1 2 ] = [ 3 4 ] − [ 3 6 ] = [ 0 − 2 ] \begin{bmatrix} 3 & 4 \end{bmatrix} - 3 \times \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \end{bmatrix} - \begin{bmatrix} 3 & 6 \end{bmatrix} = \begin{bmatrix} 0 & -2 \end{bmatrix} [34]3×[12]=[34][36]=[02]

使用第一行的主元 1,消去第三行的第一个元素 5 R 3 = R 3 − 5 × R 1 R_3 = R_3 - 5 \times R_1 R3=R35×R1

计算:
[ 5 6 ] − 5 × [ 1 2 ] = [ 5 6 ] − [ 5 10 ] = [ 0 − 4 ] \begin{bmatrix} 5 & 6 \end{bmatrix} - 5 \times \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \end{bmatrix} - \begin{bmatrix} 5 & 10 \end{bmatrix} = \begin{bmatrix} 0 & -4 \end{bmatrix} [56]5×[12]=[56][510]=[04]

此时,矩阵变为:
[ 1 2 0 − 2 0 − 4 ] \begin{bmatrix} 1 & 2 \\ 0 & -2 \\ 0 & -4 \end{bmatrix} 100224
步骤 2:将第二行的主元 -2 变为 1。通过将第二行除以 -2 R 2 = 1 − 2 × R 2 = [ 0 1 ] R_2 = \frac{1}{-2} \times R_2 = \begin{bmatrix} 0 & 1 \end{bmatrix} R2=21×R2=[01]

此时,矩阵变为:
[ 1 2 0 1 0 − 4 ] \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & -4 \end{bmatrix} 100214
步骤 3:消去第三行的第二个元素 -4。通过使用第二行的主元 1 来消去第三行的第二列的 -4 R 3 = R 3 + 4 × R 2 R_3 = R_3 + 4 \times R_2 R3=R3+4×R2

计算:
[ 0 − 4 ] + 4 × [ 0 1 ] = [ 0 − 4 ] + [ 0 4 ] = [ 0 0 ] \begin{bmatrix} 0 & -4 \end{bmatrix} + 4 \times \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -4 \end{bmatrix} + \begin{bmatrix} 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} [04]+4×[01]=[04]+[04]=[00]

此时,矩阵变为:
[ 1 2 0 1 0 0 ] \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} 100210
步骤 4:消去第一行的第二个元素 2。通过使用第二行的主元 1 来消去第一行的第二列的 2 R 1 = R 1 − 2 × R 2 R_1 = R_1 - 2 \times R_2 R1=R12×R2

计算:
[ 1 2 ] − 2 × [ 0 1 ] = [ 1 2 ] − [ 0 2 ] = [ 1 0 ] \begin{bmatrix} 1 & 2 \end{bmatrix} - 2 \times \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} [12]2×[01]=[12][02]=[10]

最终的行最简形式为:
REF = [ 1 0 0 1 0 0 ] \text{REF} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} REF= 100010

结果:

行简化阶梯形矩阵中有 2 行非零行,所以矩阵的行秩为 2

二 、计算列秩

使用初等列变换将矩阵简化
计算列秩。我们通过列变换将矩阵化为 列简化阶梯形矩阵 ,最后非零列的数量就是列秩。

列最简形式 (Column Echelon Form, CEF)
为了得到列最简形式,先对矩阵进行转置,再进行行化简,最后转置回来。

给定矩阵:
A = [ 1 2 3 4 5 6 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} A= 135246

步骤 1:转置矩阵。

矩阵转置为:
A T = [ 1 3 5 2 4 6 ] A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} AT=[123456]
步骤 2:对转置矩阵 A T A^T AT 进行行化简。
使用第一行的主元 1 消去第二行的第一列的 2 R 2 = R 2 − 2 × R 1 R_2 = R_2 - 2 \times R_1 R2=R22×R1

计算:
[ 2 4 6 ] − 2 × [ 1 3 5 ] = [ 2 4 6 ] − [ 2 6 10 ] = [ 0 − 2 − 4 ] \begin{bmatrix} 2 & 4 & 6 \end{bmatrix} - 2 \times \begin{bmatrix} 1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \end{bmatrix} - \begin{bmatrix} 2 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -4 \end{bmatrix} [246]2×[135]=[246][2610]=[024]

将第二行的主元 -2 变为 1 R 2 = 1 − 2 × [ 0 − 2 − 4 ] = [ 0 1 2 ] R_2 = \frac{1}{-2} \times \begin{bmatrix} 0 & -2 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} R2=21×[024]=[012]

  • 使用第二行的主元 1 消去第一行的第二个元素 3 R 1 = R 1 − 3 × R 2 R_1 = R_1 - 3 \times R_2 R1=R13×R2

计算:
[ 1 3 5 ] − 3 × [ 0 1 2 ] = [ 1 3 5 ] − [ 0 3 6 ] = [ 1 0 − 1 ] \begin{bmatrix} 1 & 3 & 5 \end{bmatrix} - 3 \times \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix} - \begin{bmatrix} 0 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} [135]3×[012]=[135][036]=[101]

行化简后,矩阵变为:
[ 1 0 − 1 0 1 2 ] \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} [100112]

步骤 3:转置回去。

转置后得到矩阵的列最简形式为:
CEF = [ 1 0 0 1 − 1 2 ] \text{CEF} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{bmatrix} CEF= 101012

结果:

列简化阶梯形矩阵中有 2 列非零列,所以矩阵的列秩为 2

经过行简化和列简化,发现无论是行秩 还是列秩 ,这个 3 × 2 3 \times 2 3×2 的矩阵的秩都是 2 。行秩和列秩相等,行简化和列简化后的矩阵都有 2 个线性无关的行或列,这就是矩阵的秩。

通过初等行变换初等列变换 ,化简矩阵,识别出线性无关的行和列。

行秩 :矩阵的行秩是指矩阵中线性无关的行向量的最大数量。
列秩 :矩阵的列秩是指矩阵中线性无关的列向量的最大数量。

行秩: 通过行简化阶梯形矩阵确定非零行的数量。
列秩: 通过列简化阶梯形矩阵确定非零列的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西笑生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值