# deeplearning.ai 总结 - Gram matrix(格拉姆矩阵)

deeplearning.ai 总结 - Gram matrix(格拉姆矩阵)

flyfish

$G={V}^{\mathrm{T}}V$$G=V^{\mathrm {T} }V$

$\mathbf{A}=\left(\begin{array}{ccc}a& b& c\end{array}\right)\phantom{\rule{thinmathspace}{0ex}},\phantom{\rule{1em}{0ex}}\mathbf{B}=\left(\begin{array}{c}x\\ y\\ z\end{array}\right)\phantom{\rule{thinmathspace}{0ex}},$$\mathbf {A} ={\begin{pmatrix}a&b&c\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}x\\y\\z\end{pmatrix}}\,,$

$\mathbf{A}\mathbf{B}=\left(\begin{array}{ccc}a& b& c\end{array}\right)\left(\begin{array}{c}x\\ y\\ z\end{array}\right)=ax+by+cz\phantom{\rule{thinmathspace}{0ex}},$$\mathbf {AB} ={\begin{pmatrix}a&b&c\end{pmatrix}}{\begin{pmatrix}x\\y\\z\end{pmatrix}}=ax+by+cz\,,$
$\mathbf{B}\mathbf{A}=\left(\begin{array}{c}x\\ y\\ z\end{array}\right)\left(\begin{array}{ccc}a& b& c\end{array}\right)=\left(\begin{array}{ccc}xa& xb& xc\\ ya& yb& yc\\ za& zb& zc\end{array}\right)\phantom{\rule{thinmathspace}{0ex}}.$$\mathbf {BA} ={\begin{pmatrix}x\\y\\z\end{pmatrix}}{\begin{pmatrix}a&b&c\end{pmatrix}}={\begin{pmatrix}xa&xb&xc\\ya&yb&yc\\za&zb&zc\end{pmatrix}}\,.$

$G\left({x}_{1},\dots ,{x}_{n}\right)=|\begin{array}{c}⟨{x}_{1},{x}_{1}⟩⟨{x}_{1},{x}_{2}⟩\dots ⟨{x}_{1},{x}_{n}⟩\\ ⟨{x}_{2},{x}_{1}⟩⟨{x}_{2},{x}_{2}⟩\dots ⟨{x}_{2},{x}_{n}⟩\\ ⋮⋮\ddots ⋮\\ ⟨{x}_{n},{x}_{1}⟩⟨{x}_{n},{x}_{2}⟩\dots ⟨{x}_{n},{x}_{n}⟩\end{array}|$$G(x_{1},\dots ,x_{n})={\begin{vmatrix}\langle x_{1},x_{1}\rangle \langle x_{1},x_{2}\rangle \dots \langle x_{1},x_{n}\rangle \\\langle x_{2},x_{1}\rangle \langle x_{2},x_{2}\rangle \dots \langle x_{2},x_{n}\rangle \\\vdots \vdots \ddots \vdots \\\langle x_{n},x_{1}\rangle \langle x_{n},x_{2}\rangle \dots \langle x_{n},x_{n}\rangle \end{vmatrix}}$

$G\left({x}_{1},\dots ,{x}_{n}\right)=‖{x}_{1}\wedge \cdots \wedge {x}_{n}{‖}^{2}.$$G(x_{1},\dots ,x_{n})=\|x_{1}\wedge \cdots \wedge x_{n}\|^{2}.$