提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
在深度学习领域,“冻结”的含义通常指的是在训练过程中保持网络模型中的某一层或多层的权重参数不变。
这样做的目的可能是为了保留预训练模型在这些层上学到的特征,或者是因为这些层的参数对于当前任务来说已经足够好,不需要再进行训练。
提示:以下是本篇文章正文内容,下面案例可供参考
一、冻结操作
对于如何执行“冻结”操作,通常可以通过设置模型层(或参数)的trainable属性为False来实现。
以下是一个简单的例子,展示了如何在PyTorch中冻结模型的一部分:
import torch
import torch.nn as nn
# 假设我们有一个预训练的模型
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
# ... 其他层 ...
)
# 我们要冻结前两层(即卷积层和ReLU层)
for param in model[:2].parameters():
param.requires_grad = False
# 现在,只有第三层及之后的层是可训练的
# 我们可以继续训练模型,但前两层的权重将保持不变
在这