这篇博客,在上一篇的基础上,针对 自动控制的数学模型 的重要考点,举一些典型的例题,加以解析,巩固大家对 自动控制的数学模型的掌握。
PID调节器 — 自动控制原理中最简单、最经典、最有用的调节器
我们先来看第一道题:
一有源网络如下图所示,要求:
- 写出系统的微分方程;
- 求系统的传递函数;
- 说明此电网络在校正中的作用。
解:
这一道题,给了一个有源网络,要求建立它的两种形式的数学模型(一种是在时域当时所对应的微分方程;还有一种是复频域当中所对应的传递函数)。并且让我们分析:如果这个电网络放在了系统当中,将会给系统的性能产生何种的校正作用。
这种类型的题,我们会经常见到。要么是以有源网络的形式,要么是以无源网络的形式出现。 要解决这样的一类问题,一般有两种方法。
第一种方法:先写出在时域中所对应的微分方程组。比如是针对这样的有源网络而言,我们要充分利用到这个理想运算放大器它的续断和虚段的原理,根据:流入A节点的电流和流出这个节点的电流相同,同时在运算放大器的同向和反向输入端又没有电流流入。这样的话,我们可以在时域当中列出它的方程,然后消去中间变量。最终得到一个只和输入和输出有关的微分方程。
还有一种方法,是我们在上一篇博客当中提醒大家,在考试中经常会使用到的方法。这种方式是这样的:不管是有源还是无源网络,我们都可以利用复阻抗的方法,将电网络当中所对应的电阻、电感、电容用复阻抗来表示,然后用运算法直接列出复频域当中所对应的方程组,然后在直接的消元或者结合框框图,求出系统的传递函数。
一般情况下,遇到的电网络,不管是有源还是无源,我们都提议使用第二种方法会比较简单。
我们现在来看看这道题。对于这样的有源网络而言。由于表述这个系统的数学模型:微分方程和传递函数之间是可以相互转换的,所以我们不管是求出来哪一种形式的数学模型,传递函数也好、微分方程也好,只要求出来一种,另外一种也就没有问题了。对于这样道题,我们来看看。
首先我们把这个有源网络当中所有的R、C 全部用 复阻抗 的形式来表示。所对应的电阻是不变的,而电容将它转换为 1CS 。这样,不管是输出信号、输入信号就都可以使用复频域的形式来表示了。
当把电路转换为这样的形式之后,我们就可以接着往下做了。对于 A 点而言,由于流入它的电流等于流出它的电流。所以我们有:
(这样就得到的复频域里面的第一个方程了。)
我们在往下看 ,对于C点而言,这是一个电网络,所以对于C 点,我们一样可以利用基尔霍夫电流定律:流入 C 点的电流应该等于流出 C 点的电流之和。
这样对于 A 和 C 这两点而言,我们都列写出来的它们所对应的电流平衡方程,而理想的有源运放同时又满足:A 点 和 B 点 是等电位的,等于0。
这样的话,由这样的三个方程,我们消去中间变量, u1(s) 、 uA(s) ,这样可以得到下面的关系式:
这里有一个负号,这里我们要做一个特别说明 :由于现在这个题中的有源运放的输入信号是加在反向输入端( − ),所以会有一个负号存在,但是这样的一个元器件,或者说这样的一个有源网络加在电路当中以后,我们知道信号一旦进过它(有源运放的反向输入端)以后,会产生一个反向作用就可以了,我们并不需要再传递函数当中额外的留意负号的存在,所以这个传递函数,我们可以进一步将它化简为:
系统的传递函数,最终化简得到:
一旦这个有源网络给定了,所以 R1、R2、R3的参数也就确定下来了。所以这个组合,只要有源网络不变,它们的 组合的值就不会发生改变,在典型环节当中,我们认为它是一个比例环节 (P)
而公式中间的部分,我们观察它,它是一个:一个常数 乘以 一个所对应的微分环节,我们在典型环节中把它叫做:微分环节(D = (
在来看最后一部分,我们可以将它写做: KI1s 。相当于一个积分常数 与 积分环节相乘。典型环节当中,我们把它叫做积分环节(I)。
所以,这样的一个有源网络,它们组合起来以后,形成了一个经典控制理论当中最重要的调节器:我们把它叫做:PID调节器。
这个PID可以这样来理解:在经典控制理论当中,我们所有的问题基本上,都是围绕着这样的一种调节器展开的,而这种调节器在整个控制领域的应是非常非常的广泛。
好,现在我们已经建立了这个图中有源网络的传递函数,并且分析了这样一个有源网络在系统当中实际上就是一个PID调节器。那么这个PID调节器的每一个部分对系统性能的影响表现在哪里呢?
首先,我们来看P 比例部分。比例部分的存在可以改变一个系统的系统增益,而一个系统的系统增益发生了改变,那么所对应的稳态性能(比如说:是否稳定),或者稳态误差的大小,都有可能会改变。
而微分部分的存在,它可以加快系统的响应速度。
而积分 部分的存在,它可以降低系统的误差。
所以,每一个部分在系统中的影响,你需要格外的清楚,当然PID调节器,我们在日后的博客中,还会再次介绍。
当我们建立起来了系统的传递函数以后,再想求它时域当中的数学模型 — 微分方程,就没有什么困难了。我们可以将传递函数当中所有的 复变量s用微分算子 来代替。也就是说,把所有的s置换成 ddt←s
我们可以得到传递函数
将上面的比例部分使用 KP 来表示、微分部分使用 KDs 来表示、积分部分使用 KI1s 来表示。
现在,我们就可以还原回时域当中。这样,我们就可以得到时域当中所对应的微分方程:
(当然,在微分方程当中,积分符号的存在,在微分方程中是不常见的。所以,我们可以对微分方程的两侧再求一次导。)
可以得到: