1.下载和编译
1.1 安装依赖项,如果中间报错,可以将下面一大托依赖分多次安装,对应的ros版本也要进行修改,我自己的是melodic
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev
sudo apt-get install libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev
pip install python-igraph
1.2 编译
mkdir -p ~/kalibr_ws/src
cd ~/kalibr_ws/src
git clone --recursive https://github.com/ori-drs/kalibr
cd ~/kalibr_ws
source /opt/ros/noetic/setup.bash
catkin init
catkin config --extend /opt/ros/noetic
catkin config --merge-devel # Necessary for catkin_tools >= 0.4.
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
catkin build -DCMAKE_BUILD_TYPE=Release -j4
问题: 因为自己的电脑上安装了anaconda3,anaconda3其自带的python可能会影响到kalibr,貌似因为kalibr需要解析rosbag包,所以使用的python2,导致出现报错
Failed to load Python extension for LZ4 support. LZ4 compression will not be availabl
真是要哭了。。。
解决办法:
在kalibr_workspace/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_cameras.py
文件中
更改 "#!/usr/bin/env python"
成"#!/usr/bin/env python2"
2. 数据准备
2.1 bag数据录制
将录制好的BAG标定文件重新录制一下,去掉不好的图片,同时将bag的频率改为4hz
分别打开两个终端,输入一下命令并运行,等待topic的输入
rosrun topic_tools throttle messages /cam_stereo_left/csi_cam/image_raw 4.0 /left
rosrun topic_tools throttle messages /cam_stereo_right/csi_cam/image_raw 4.0 /right
新打开一个终端,用来录制视频
rosbag record -O stereo_calibra.bag /left /right
新打开一个终端,用来播放原数据集
rosbag play 0620_1280x720.bag
2.2 标定板参数文件
自己写一个,checkboard_8x6_10x10cm.yaml
target_type: 'checkerboard'
targetCols: 8
targetRows: 6
rowSpacingMeters: 0.1
colSpacingMeters: 0.1
target_type
:是标定板的类型,这里使用的棋盘格
targetCols
:标定版列方向的角点数量
targetRows
:标定办行方向的角点数量
rowSpacingMeters
:每个棋盘格的宽,单位米
colSpacingMeters
:每个棋盘格的高,单位米
附上其他两种标定板对应的配置文件
“二维码标定板”
target_type: 'aprilgrid' #gridtype
tagCols: 6 #number of apriltags
tagRows: 6 #number of apriltags
tagSize: 0.088 #size of apriltag, edge to edge [m]
tagSpacing: 0.3 #ratio of space between tags to tagSize
#example: tagSize=2m, spacing=0.5m --> tagSpacing=0.25[-]
“圆形标定板”
target_type: 'circlegrid' #gridtype
targetCols: 6 #number of circles (cols)
targetRows: 7 #number of circles (rows)
spacingMeters: 0.02 #distance between circles [m]
asymmetricGrid: False #use asymmetric grid (opencv) [bool]
标定板pdf生成命令:
根据需要修改下--nx
,--ny
,--tsize
,--tspace
rosrun kalibr kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.02 --tspace 0.3
3. 开始标定
在工作空间目录下打开终端
source YOUR_PATH/devel/setup.bash
rosrun kalibr kalibr_calibrate_cameras --bag /home/lusx/data/stereo_calibra.bag --topics /left /right --models pinhole-radtan pinhole-radtan --target src/Kalibr/config/checkboard_8x6_10x10cm.yaml
--bag:标定数据的名称
--topics:左右目相机的topic
--models:左右目相机模型
#pinhole-radtan: 最常见的针孔模型+布朗畸变模型, 适用于大多数的角度小于120的相机, 其中畸变参数包含了径向畸变k1,k2和切向畸变p1,p2; 如果相机的畸变情况不是很严重,这个模型基本都可以; 比如我的DFOV为150的相机, 也可以用这个且去畸变效果很好;
# pinhole-equi:针孔模型+等距畸变模型,也就是KB模型所需要选择的类型,该模型的使用范围也很广,大部分的鱼眼镜头也可以,注意8参数的KB模型的畸变参数为k1,k2,k3,k4,虽然也是四个数,但与前一个模型不同的是,这里只有径向畸变的参数,而没有切向畸变tangential distortion,投影时对应的公式也不同;同时这也是opencv中cv::fisheye使用的模型;
--target:标定板参数配置文件
报错:
Cameras are not connected through mutual observations, please check the dataset. Maybe adjust the approx. sync. tolerance.
原因是两个相机不同步,既可以提高采集频率到20hz,也可以同时增加同步忍耐度 --bag-from-to 5 35 --approx-sync 0.04,
完整参数如下:
rosrun kalibr kalibr_calibrate_cameras --bag /home/lusx/data/stereo_calibra.bag --bag-from-to 5 100 --topics /left /right --models pinhole-radtan pinhole-radtan --target src/Kalibr/config/checkboard_8x6_10x10cm.yaml --approx-sync 0.04
3.3 标定结果
生成3个文件,参数可以在stereo_calibra-camchain.yaml
查看,细节可以在stereo_calibra-report-cam.pdf
中查看
stereo_calibra-camchain.yaml
内容:
4参数优化
然而标定得到的内外参感觉有拉跨,不知道是不是使用的原始数据有问题,然后也没有找到两个相机的基线bf,继续优化吧。。