使用kalibr标定工具进行单目相机和双目相机的标定

1.下载和编译

1.1 安装依赖项,如果中间报错,可以将下面一大托依赖分多次安装,对应的ros版本也要进行修改,我自己的是melodic

sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev
sudo apt-get install libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev

pip install python-igraph

1.2 编译

mkdir -p ~/kalibr_ws/src
cd ~/kalibr_ws/src
git clone --recursive https://github.com/ori-drs/kalibr

cd ~/kalibr_ws
source /opt/ros/noetic/setup.bash
catkin init
catkin config --extend /opt/ros/noetic
catkin config --merge-devel # Necessary for catkin_tools >= 0.4.
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

catkin build -DCMAKE_BUILD_TYPE=Release -j4

问题: 因为自己的电脑上安装了anaconda3,anaconda3其自带的python可能会影响到kalibr,貌似因为kalibr需要解析rosbag包,所以使用的python2,导致出现报错
Failed to load Python extension for LZ4 support. LZ4 compression will not be availabl
真是要哭了。。。

解决办法:
kalibr_workspace/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_calibrate_cameras.py 文件中
更改 "#!/usr/bin/env python""#!/usr/bin/env python2"

2. 数据准备

2.1 bag数据录制

将录制好的BAG标定文件重新录制一下,去掉不好的图片,同时将bag的频率改为4hz
分别打开两个终端,输入一下命令并运行,等待topic的输入

rosrun topic_tools throttle messages /cam_stereo_left/csi_cam/image_raw 4.0 /left
rosrun topic_tools throttle messages /cam_stereo_right/csi_cam/image_raw 4.0 /right

新打开一个终端,用来录制视频

rosbag record -O stereo_calibra.bag /left /right

新打开一个终端,用来播放原数据集

rosbag play 0620_1280x720.bag

2.2 标定板参数文件

自己写一个,checkboard_8x6_10x10cm.yaml

target_type: 'checkerboard'
targetCols: 8
targetRows: 6
rowSpacingMeters: 0.1
colSpacingMeters: 0.1

target_type:是标定板的类型,这里使用的棋盘格
targetCols:标定版列方向的角点数量
targetRows:标定办行方向的角点数量
rowSpacingMeters:每个棋盘格的宽,单位米
colSpacingMeters:每个棋盘格的高,单位米

附上其他两种标定板对应的配置文件
“二维码标定板”

target_type: 'aprilgrid' #gridtype
tagCols: 6               #number of apriltags
tagRows: 6               #number of apriltags
tagSize: 0.088           #size of apriltag, edge to edge [m]
tagSpacing: 0.3          #ratio of space between tags to tagSize
                         #example: tagSize=2m, spacing=0.5m --> tagSpacing=0.25[-]

“圆形标定板”

target_type: 'circlegrid'  #gridtype
targetCols: 6              #number of circles (cols)
targetRows: 7              #number of circles (rows)
spacingMeters: 0.02        #distance between circles [m]
asymmetricGrid: False      #use asymmetric grid (opencv) [bool]

标定板pdf生成命令:
根据需要修改下--nx,--ny,--tsize,--tspace

rosrun kalibr kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.02 --tspace 0.3

3. 开始标定

在工作空间目录下打开终端

source YOUR_PATH/devel/setup.bash
rosrun kalibr kalibr_calibrate_cameras --bag /home/lusx/data/stereo_calibra.bag --topics /left /right --models pinhole-radtan pinhole-radtan --target src/Kalibr/config/checkboard_8x6_10x10cm.yaml
--bag:标定数据的名称
--topics:左右目相机的topic
--models:左右目相机模型
#pinhole-radtan: 最常见的针孔模型+布朗畸变模型, 适用于大多数的角度小于120的相机, 其中畸变参数包含了径向畸变k1,k2和切向畸变p1,p2; 如果相机的畸变情况不是很严重,这个模型基本都可以; 比如我的DFOV为150的相机, 也可以用这个且去畸变效果很好;
# pinhole-equi:针孔模型+等距畸变模型,也就是KB模型所需要选择的类型,该模型的使用范围也很广,大部分的鱼眼镜头也可以,注意8参数的KB模型的畸变参数为k1,k2,k3,k4,虽然也是四个数,但与前一个模型不同的是,这里只有径向畸变的参数,而没有切向畸变tangential distortion,投影时对应的公式也不同;同时这也是opencv中cv::fisheye使用的模型;
--target:标定板参数配置文件

报错:
Cameras are not connected through mutual observations, please check the dataset. Maybe adjust the approx. sync. tolerance.

原因是两个相机不同步,既可以提高采集频率到20hz,也可以同时增加同步忍耐度 --bag-from-to 5 35 --approx-sync 0.04,
完整参数如下:
rosrun kalibr kalibr_calibrate_cameras --bag /home/lusx/data/stereo_calibra.bag --bag-from-to 5 100 --topics /left /right --models pinhole-radtan pinhole-radtan --target src/Kalibr/config/checkboard_8x6_10x10cm.yaml --approx-sync 0.04

3.3 标定结果

生成3个文件,参数可以在stereo_calibra-camchain.yaml查看,细节可以在stereo_calibra-report-cam.pdf中查看
在这里插入图片描述
stereo_calibra-camchain.yaml内容:
在这里插入图片描述

4参数优化

然而标定得到的内外参感觉有拉跨,不知道是不是使用的原始数据有问题,然后也没有找到两个相机的基线bf,继续优化吧。。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值