运行correspondence_grouping出现找不到文件情况问题(PCL)

13 篇文章 1 订阅
7 篇文章 0 订阅

问题如图:
在这里插入图片描述
解决:
在××.cpp文件里加入缺少文件的**.hpp(对应**.h)
从搜索中,找到文件所在目录,添加。如图最后一行。
在这里插入图片描述

非常抱歉,给出的代码中可能存在错误。在PCL库中,`pcl.IterativeClosestPoint`对象没有`set_max_correspondence_distance`方法。下面是一种使用PCL库中的其他方法来设置ICP算法的最大对应距离的示例: ```python import pcl # 创建源点云和目标点云对象 source_cloud = pcl.PointCloud() source_cloud.from_file("path/to/source_cloud.pcd") target_cloud = pcl.PointCloud() target_cloud.from_file("path/to/target_cloud.pcd") # 创建ICP对象 icp = pcl.IterativeClosestPoint() # 设置源点云和目标点云 icp.setInputSource(source_cloud) icp.setInputTarget(target_cloud) # 设置ICP算法参数 max_correspondence_distance = 0.01 # 最大对应距离 icp.setMaxCorrespondenceDistance(max_correspondence_distance) # 执行ICP配准 aligned_cloud = pcl.PointCloud() icp.align(aligned_cloud) # 输出配准结果 print("ICP has converged:", icp.hasConverged()) print("Transformation matrix:\n", icp.getFinalTransformation()) ``` 在上述示例中,我们首先加载源点云和目标点云数据,并创建了对应的PointCloud对象。然后,我们创建了一个`pcl.IterativeClosestPoint`对象,并将源点云和目标点云设置为其输入。接着,我们使用`setMaxCorrespondenceDistance`方法设置了ICP算法的最大对应距离参数。 然后,我们执行ICP配准,并将结果保存在新创建的PointCloud对象`aligned_cloud`中。最后,我们打印出ICP是否收敛的信息以及最终的变换矩阵。 请确保在运行代码之前已经安装了`py-pcl`库和PCL库及其依赖。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值