一、理论基础
1.1 引言
粒子群优化算法(Particle Swarm Optimization, PSO)自1995年由Eberhart和Kennedy提出以来,已经成为解决优化问题的一种有效且广泛应用的方法。作为一种进化计算技术,PSO受到社会行为模式,特别是鸟群和鱼群的觅食行为的启发。本篇博客将从计算机科学与工程专家学者的角度,深入探讨PSO算法的基本原理、理论推导及其在各个领域的应用。
粒子群算法来源于对鸟类群体活动规律性的研究,进而利用群体智能建立的简化模型,它模拟了鸟类的觅食行为,将求解问题的搜索空间比作鸟类的飞行空间,将每只鸟抽象成一个没有质量和体积的粒子,用来表征问题的一个可行解。粒子群算法与其他的进化算法类似,也是基于种群、进化概念,通过个体间的协作与竞争,实现对复杂空间最优解的搜索。同时,它又不像其他的进化算法那样对个体进行交叉、变异、选择等进化算子操作,而将群体中的个体看做在D维空间中没有质量和体积的粒子,每个粒子以一定的速度在解空间中运动,并向自身历史最佳位置P1和群体最佳位置G聚集,实现对候选解的进化。
粒子群算法具有很好的生物社会背景而易于理解,由于参数少而容易实现,对非线性、多峰问题具有较强的全局搜索能力,在科学研究和工程应用中得到可广泛的关注。目前,该算法已广泛应用在函数优化、神经网络训练、模式识别、模糊控制等领域。
1.2 粒子群算法描述
PSO算法中,每个解都被视为搜索空间内的一个“粒子”,每个粒子都有其位置和速度,这些粒子在解空间中飞行以寻找最优解。粒子的飞行是根据个体和社会经验来调整的,具体来说,是根据两个最佳值来调整。第一个是粒子自身找到的最优解(个体最优解,pbest),另一个是整个种群目前找到的最优解(全局最优解,gbest)。
粒子群算法的信息共享机制可以解释为一种共生合作的行为,即每个粒子都在不停地进行搜索,并且其搜索行为在不同程度上受到群体其他个体的影响。同时,这些粒子还具备对所经历历史最佳位置的记忆能力,即其搜索行为在受其他个体影响的同时还受到自身经验的引导。
基于独特的搜索机制,粒子群算法首先生成了初始种群,即在可行解空间和速度空间随机初始化粒子的速度和位置,其中粒子的位置用于表征问题的可行解,然后通过种群间粒子个体的合作和竞争来求解优化问题。
1.3 粒子群算法特点
粒子群算法本质是一种随机搜索算法,它是一种新兴的智能优化技术。该算法能以较大概率收敛于全局最优解。实践证明,它适合在动态、多目标优化环境中寻优,与传统优化算法相比,具有较快的计算速度和更好的全局搜索能力。
(1)粒子群算法是基于群智能理论的优化算法,通过群体中粒子间的合作与竞争产生的群体智能指导优化搜索。与其他算法相比,粒子群算法是一种高效的并行搜索算法。
(2)粒子群算法与遗传算法都是随机初始化种群,使用适应值来评价个体的优劣程度和进行一定的随机搜索。但粒子群算法根据自己的速度来决定搜索,没有遗传算法的交叉与变异。与进化算法相比,粒子群算法保留了基于种群的全局搜索策略,但是其采用的速度-位移模型操作简单,避免了复杂的遗传操作。
(3)由于每个粒子在算法结束时仍保持其个体极值,即粒子群算法除了可以找到问题的最优解外,还会得到若干较好的次优解,因此将粒子群算法用于调度和决策问题可以给出多种有意义的方案。
(4)粒子群算法特有的记忆使其可以动态地跟踪当前搜索情况并调整其搜索