非线性优化 (曲线拟合) 问题:高斯牛顿、g2o 方法总结

 其实还有一个Ceres库可以进行优化,但是之前的博客已经具体分析了,所以这里就对其余两个进行了介绍,相关的内容是SLAM14讲里面的知识

 

一、理论部分

我们先用一个简单的例子来说明如何求解最小二乘问题,然后展示如何手写高斯牛顿法和优化库求解此问题

高斯牛顿法

 

g2o曲线拟合

g2o (General Graphic Optimization G 2 O )。它是一个基于 图优化 的库。图优化是一种将非线性优化与图论结合起来的理论,因此在使用它之前,我们花一点篇幅介绍一个图优化理论。
图优化理论简介 我们已经介绍了非线性最小二乘的求解方式。它们是由很多个误差项之和组成的。然 而,仅有一组优化变量和许多个误差项,我们并不清楚它们之间的关联 。比方说,某一个 优化变量 x j 存在于多少个误差项里呢?我们能保证对它的优化是有意义的吗?进一步,我 们希望能够直观地看到该优化问题长什么样 。于是,就说到了图优化。 图优化,是把优化问题表现成图( Graph 的一种方式。这里的 是图论意义上的图。 一个图由若干个顶点( Vertex ,以及连接着这些节点的 边( Edge 组成。进而,用 顶点 表示优化变量 ,用 表示 误差项。于是,对任意一个上述形式的非线性最小二乘问题,我们可以构建与之对应的一个
 

6-2 是一个简单的图优化例子。我们用三角形表示相机位姿节点,用圆形表示路标 点,它们构成了图优化的顶点;同时,蓝色线表示相机的运动模型,红色虚线表示观测模 型,它们构成了图优化的边。此时,虽然整个问题的数学形式仍是式(6.12 )那样,但现在 我们可以直观地看到问题的结构 了。如果我们希望,也可以做 去掉孤立顶点 优先优化边 数较多(或按图论的术语,度数较大)的顶点这样的改进。但是最基本的图优化,是用图 模型来表达一个非线性最小二乘的优化问题。而我们可以利用图模型的某些性质,做更好 的优化。 g2o 为 SLAM 提供了图优化所需的内容。下面我们来演示一下 g2o 的使用方法。
 

g2o 的编译与安装

在使用一个库之前,我们需要对它进行编译和安装。读者应该已经体验很多次这个过 程了,它们基本都是大同小异的。关于 g2o ,读者可以从 github 下载它: https://github. com/RainerKuemmerle/g2o,或从本书提供的第三方代码库中获得。
解压代码包后,你会看到 g2o 库的所有源码,它也是一个 CMake 工程。我们先来安 装它的依赖项(部分依赖项与 Ceres 有重合):
sudo apt-get install libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.2
libcholmod-dev
然后,按照 cmake 的方式对 g2o 进行编译安装即可,我们略去该过程的说明。安装完 成后,g2o 的头文件将在 /usr/local/g2o 下,库文件在 /usr/local/lib/ 下。现在,我们重新 考虑 Ceres 例程中的曲线拟合实验,在 g2o 中实验一遍。
 
 

使用 g2o 拟合曲线

为了使用 g2o ,首先要做的是将曲线拟合问题抽象成图优化。这个过程中,只要记住节点为优化变量,边为误差项即可。因此,曲线拟合的图优化问题可以画成图 6-3 的形式。
 
 
在曲线拟合问题中,整个问题只有一个顶点:曲线模型的参数 a, b, c ;而每个带噪声的数据点,构成了一个个误差项,也就是图优化的边。但这里的边与我们平时想的边不太一样,它们是一元边 Unary Edge ),即 只连接一个顶点 ——因为我们整个图只有一个顶点。 所以在图 6-3 中,我们就只能把它画成自己连到自己的样子了。事实上,图优化中一条边可以连接一个、两个或多个顶点,这主要反映在每个误差与多少个优化变量有关。在稍微有些玄妙的说法中,我们把它叫做超边 Hyper Edge ),整个图叫做 超图 Hyper Graph ) ①。弄清了这个图模型之后,接下来就是在 g2o 中建立该模型,进行优化了。作为 g2o 的 用户,我们要做的事主要有以下几个步骤:
1. 定义顶点和边的类型;
2. 构建图;
3. 选择优化算法;
4. 调用 g2o 进行优化,返回结果。
 
 

二、实践部分

2.1 手写高斯牛顿法

#include <iostream>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 开始Gauss-Newton迭代
  int iterations = 100;    // 迭代次数
  double cost = 0, lastCost = 0;  // 本次迭代的cost和上一次迭代的cost

  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  for (int iter = 0; iter < iterations; iter++) {

    Matrix3d H = Matrix3d::Zero();             // Hessian = J^T W^{-1} J in Gauss-Newton
    Vector3d b = Vector3d::Zero();             // bias
    cost = 0;

    for (int i = 0; i < N; i++) {
      double xi = x_data[i], yi = y_data[i];  // 第i个数据点
      double error = yi - exp(ae * xi * xi + be * xi + ce);
      Vector3d J; // 雅可比矩阵
      J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce);  // de/da
      J[1] = -xi * exp(ae * xi * xi + be * xi + ce);  // de/db
      J[2] = -exp(ae * xi * xi + be * xi + ce);  // de/dc

      H += inv_sigma * inv_sigma * J * J.transpose();
      b += -inv_sigma * inv_sigma * error * J;

      cost += error * error;
    }

    // 求解线性方程 Hx=b
    Vector3d dx = H.ldlt().solve(b);
    if (isnan(dx[0])) {
      cout << "result is nan!" << endl;
      break;
    }

    if (iter > 0 && cost >= lastCost) {
      cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
      break;
    }

    ae += dx[0];
    be += dx[1];
    ce += dx[2];

    lastCost = cost;

    cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
         "\t\testimated params: " << ae << "," << be << "," << ce << endl;
  }

  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
  return 0;
}

其结果如下,经过多次迭代,曲线拟合趋于收敛的状态!

2.2 使用g2o进行曲线拟合

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>

using namespace std;

// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  // 重置
  virtual void setToOriginImpl() override {
    _estimate << 0, 0, 0;
  }

  // 更新
  virtual void oplusImpl(const double *update) override {
    _estimate += Eigen::Vector3d(update);
  }

  // 存盘和读盘:留空
  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}
};

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}

  // 计算曲线模型误差
  virtual void computeError() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    _error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
  }

  // 计算雅可比矩阵
  virtual void linearizeOplus() override {
    const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
    _jacobianOplusXi[0] = -_x * _x * y;
    _jacobianOplusXi[1] = -_x * y;
    _jacobianOplusXi[2] = -y;
  }

  virtual bool read(istream &in) {}

  virtual bool write(ostream &out) const {}

public:
  double _x;  // x 值, y 值为 _measurement
};

int main(int argc, char **argv) {
  double ar = 1.0, br = 2.0, cr = 1.0;         // 真实参数值
  double ae = 2.0, be = -1.0, ce = 5.0;        // 估计参数值
  int N = 100;                                 // 数据点
  double w_sigma = 1.0;                        // 噪声Sigma值
  double inv_sigma = 1.0 / w_sigma;
  cv::RNG rng;                                 // OpenCV随机数产生器

  vector<double> x_data, y_data;      // 数据
  for (int i = 0; i < N; i++) {
    double x = i / 100.0;
    x_data.push_back(x);
    y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
  }

  // 构建图优化,先设定g2o
  typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType;  // 每个误差项优化变量维度为3,误差值维度为1
  typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型

  // 梯度下降方法,可以从GN, LM, DogLeg 中选
  auto solver = new g2o::OptimizationAlgorithmGaussNewton(
    g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
  g2o::SparseOptimizer optimizer;     // 图模型
  optimizer.setAlgorithm(solver);   // 设置求解器
  optimizer.setVerbose(true);       // 打开调试输出

  // 往图中增加顶点
  CurveFittingVertex *v = new CurveFittingVertex();
  v->setEstimate(Eigen::Vector3d(ae, be, ce));
  v->setId(0);
  optimizer.addVertex(v);

  // 往图中增加边
  for (int i = 0; i < N; i++) {
    CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
    edge->setId(i);
    edge->setVertex(0, v);                // 设置连接的顶点
    edge->setMeasurement(y_data[i]);      // 观测数值
    edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
    optimizer.addEdge(edge);
  }

  // 执行优化
  cout << "start optimization" << endl;
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  optimizer.initializeOptimization();
  optimizer.optimize(10);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "solve time cost = " << time_used.count() << " seconds. " << endl;

  // 输出优化值
  Eigen::Vector3d abc_estimate = v->estimate();
  cout << "estimated model: " << abc_estimate.transpose() << endl;

  return 0;
}
在这个程序中,我们从 g2o 派生出了用于曲线拟合的图优化顶点和边: CurveFittingVertex 和 CurveFittingEdge ,这实质上是扩展了 g2o 的使用方式。在这两个派生类 中,我们重写了重要的虚函数:
1. 顶点的更新函数:oplusImpl
我们知道优化过程最重要的是增量 x 的计算,而该 函数处理的是 x k +1 = x k + ∆ x 的过程。
读者会觉得这并不是什么值得一提的事情,因为仅仅是个简单的加法而已,为什么 g2o 不帮我们完成呢?在曲线拟合过程中,由于优化变量(曲线参数)本身位于向量 空间中,这个更新计算确实就是简单的加法。但是,当优化变量不处于向量空间中时,
比方说 x 是相机位姿,它本身不一定有加法运算。这时,就需要重新定义 增量如何加到现有的估计上的行为了。按照第四讲的解释,我们可能使用左乘更新或右乘更新,而不是直接的加法。
2. 顶点的重置函数: setToOriginImpl 。这是平凡的,我们把估计值置零即可。
3. 边的误差计算函数: computeError 。该函数需要取出边所连接的顶点的当前估计值, 根据曲线模型,与它的观测值进行比较。这和最小二乘问题中的误差模型是一致的。
4. 存盘和读盘函数: read, write 。由于我们并不想进行读写操作,就留空了。 定义了顶点和边之后,我们在 main 函数里声明了一个图模型,然后按照生成的噪声数据,往图模型中添加顶点和边,最后调用优化函数进行优化。g2o 会给出优化的结果:

三、小结

本节介绍了 SLAM 中经常碰到的一种非线性优化问题:由许多个误差项平方和组成的最小二乘问题。我们介绍了它的定义和求解,并且讨论了两种主要的梯度下降方式:GaussNewton 和 Levenberg-Marquardt 。在实践部分中,我们分别使用了 Ceres g2o 两种优化库求解同一个曲线拟合问题,发现它们给出了相似的结果。 由于我们还没有详细谈 Bundle Adjustment ,所以实践部分选择了曲线拟合这样一个 简单但有代表性的例子,以演示一般的非线性最小二乘求解方式。特别地,如果用 g2o 来拟合曲线,我们必须先把问题转换为图优化,定义新的顶点和边,这种做法是有一些迂回的——g2o 的主要目的并不在此。相比之下,Ceres 定义误差项,求曲线拟合问题则自然了很多,因为它本身即是一个优化库。然而,在 SLAM 中,更多的问题是,一个带有许多个相机位姿和许多个空间点的优化问题如何求解。特别地,当相机位姿以李代数表示时,误差项关于相机位姿的导数如何计算,将是一件值得详细讨论的事。我们将在后续的章节中发现,g2o 提供了大量的顶点和边的类型,使得它在相机位姿估计问题中非常方便。而在Ceres 中,我们不得不自己实现每一个 Cost Function,带来了一些不便。在实践部分的两个程序中,我们没有去计算曲线模型关于三个参数的导数,而是利用了优化库的数值求导,这使得理论和代码都会简洁一些。Ceres 库提供了基于模板元的自动求导和运行时的数值求导,而 g2o 只提供了运行时数值求导这一种方式。但是,对于大多数问题,如果我们能够推导出雅可比矩阵的解析形式并告诉优化库,就可以避免数值求导中的诸多问题。最后,希望读者能够适应 Ceres 和 g2o 这些大量使用模板编程的方式。也许一开始会看上去比较吓人(特别是 Ceres 设置 Problem 和 g2o 初始化部分的代码),但是一旦熟悉
之后,就会觉得这样的方式是自然的,而且容易扩展。我们将在 SLAM 后端章节中,继续 讨论稀疏性、核函数、位姿图(Pose Graph )等问题。

 

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
高斯牛顿法是一种求解非线性最小二乘问题的迭代算法,其基本思想是利用牛顿法的思想对目标函数进行二次近似,并不断迭代求解。 我们考虑一个简单的非线性最小二乘问题: $$ \min_{x\in \mathbb{R}^n} f(x) = \sum_{i=1}^{m} (x_1e^{x_2t_i}-y_i)^2 $$ 其中 $t_i$ 和 $y_i$ 均已知,我们要求解的是 $x$。 我们可以使用高斯牛顿法来求解该问题,具体的算法步骤为: 1. 初始化 $x_0$ 2. 对于 $k=0,1,2\cdots$,计算 $\Delta x_k$,其中 $$ \Delta x_k = -(J_k^TJ_k)^{-1}J_k^Tf(x_k) $$ 其中 $J_k$ 为目标函数 $f(x)$ 在 $x_k$ 处的雅可比矩阵。 3. 计算 $x_{k+1} = x_k +\Delta x_k$ 4. 如果 $||\Delta x_k||\leq \epsilon$,则停止迭代,否则转到步骤 2。 使用 MATLAB 可以很方便地实现高斯牛顿法,下面给出一个简单的实现: ```matlab function x = gauss_newton(t, y, x0, eps) % 非线性最小二乘问题高斯牛顿法实现 m = length(y); % 样本数 n = length(x0); % 自变量维度 x = x0; while true % 计算目标函数和雅可比矩阵 f = zeros(m, 1); J = zeros(m, n); for i = 1:m f(i) = x(1)*exp(x(2)*t(i))-y(i); J(i,1) = exp(x(2)*t(i)); J(i,2) = x(1)*t(i)*exp(x(2)*t(i)); end % 计算更新方向 delta_x = -(J'*J)\J'*f; % 更新自变量 x = x + delta_x; % 判断是否满足停止条件 if norm(delta_x) < eps break; end end end ``` 我们可以使用上述程序来求解上述非线性最小二乘问题,具体的使用方法为: ```matlab % 示例数据 t = [0:0.1:1]'; y = [2.04 2.05 2.06 2.09 2.10 2.11 2.14 2.15 2.16 2.19 2.20]'; % 初始化自变量 x0 = [1;1]; % 求解 x = gauss_newton(t, y, x0, 1e-6); ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

他人是一面镜子,保持谦虚的态度

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值