李永乐数学基础过关660题线性代数填空题

目录

284.设四阶方阵 A = [ α , γ 2 , γ 3 , γ 4 ] , B = [ β , γ 2 , γ 3 , γ 4 ] \bm{A}=[\bm{\alpha},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4],\bm{B}=[\bm{\beta},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4] A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中 α , β , γ 2 , γ 3 , γ 4 \bm{\alpha},\bm{\beta},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4 α,β,γ2,γ3,γ4均为四维向量,且 ∣ A ∣ = 5 , ∣ B ∣ = − 1 2 |\bm{A}|=5,|\bm{B}|=-\cfrac{1}{2} A=5,B=21,则 ∣ A + 2 B ∣ = |\bm{A}+2\bm{B}|= A+2B=______.

  因为
A + 2 B = [ α , γ 2 , γ 3 , γ 4 ] + [ 2 α , 2 γ 2 , 2 γ 3 , 2 γ 4 ] = [ α + 2 α , 3 γ 2 , 3 γ 3 , 3 γ 4 ] \bm{A}+2\bm{B}=[\bm{\alpha},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4]+[2\bm{\alpha},2\bm{\gamma}_2,2\bm{\gamma}_3,2\bm{\gamma}_4]=[\bm{\alpha}+2\bm{\alpha},3\bm{\gamma}_2,3\bm{\gamma}_3,3\bm{\gamma}_4] A+2B=[α,γ2,γ3,γ4]+[2α,2γ2,2γ3,2γ4]=[α+2α,3γ2,3γ3,3γ4]
  故有
∣ A + 2 B ∣ = ∣ α + 2 α , 3 γ 2 , 3 γ 3 , 3 γ 4 ∣ = 27 ∣ α + 2 α , γ 2 , γ 3 , γ 4 ∣ = 27 ( ∣ α , γ 2 , γ 3 , γ 4 ∣ + 2 ∣ β , γ 2 , γ 3 , γ 4 ∣ ) = 27 ( ∣ A ∣ + 2 ∣ B ∣ ) = 108. \begin{aligned} |\bm{A}+2\bm{B}|&=|\bm{\alpha}+2\bm{\alpha},3\bm{\gamma}_2,3\bm{\gamma}_3,3\bm{\gamma}_4|=27|\bm{\alpha}+2\bm{\alpha},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4|\\ &=27(|\bm{\alpha},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4|+2|\bm{\beta},\bm{\gamma}_2,\bm{\gamma}_3,\bm{\gamma}_4|)\\ &=27(|\bm{A}|+2|\bm{B}|)=108. \end{aligned} A+2B=α+2α,3γ2,3γ3,3γ4=27α+2α,γ2,γ3,γ4=27(α,γ2,γ3,γ4+2β,γ2,γ3,γ4)=27(A+2B)=108.
这道题主要利用了行列式和矩阵的关系求解

329.已知 A \bm{A} A是三阶矩阵,且矩阵 A \bm{A} A各行元素之和均为 5 5 5,则矩阵 A \bm{A} A必有特征向量______.

  矩阵 A \bm{A} A各行元素之和均为 5 5 5,即
{ a 11 + a 12 + a 13 = 5 , a 21 + a 22 + a 23 = 5 , a 31 + a 32 + a 33 = 5. \begin{cases} a_{11}+a_{12}+a_{13}=5,\\ a_{21}+a_{22}+a_{23}=5,\\ a_{31}+a_{32}+a_{33}=5. \end{cases} a11+a12+a13=5,a21+a22+a23=5,a31+a32+a33=5.
  即
( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) ( 1 1 1 ) = ( 5 5 5 ) \begin{pmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{pmatrix} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}= \begin{pmatrix} 5\\ 5\\ 5 \end{pmatrix} a11a21a31a12a22a32a13a23a33111=555
  即
A ( 1 1 1 ) = 5 ( 1 1 1 ) \bm{A}\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}=5 \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} A111=5111
这道题主要利用了凑整法求解

333.已知矩阵 A = ( 3 1 2 0 2 a 0 0 3 ) \bm{A}=\begin{pmatrix}3&1&2\\0&2&a\\0&0&3\end{pmatrix} A=3001202a3和对角矩阵相似,则 a = a= a=______.

  因为 ∣ λ E − A ∣ = ∣ λ − 3 − 1 − 2 0 λ − 2 − a 0 0 λ − 3 ∣ = ( λ − 2 ) ( λ − 3 ) 2 |\lambda\bm{E}-\bm{A}|=\begin{vmatrix}\lambda-3&-1&-2\\0&\lambda-2&-a\\0&0&\lambda-3\end{vmatrix}=(\lambda-2)(\lambda-3)^2 λEA=λ3001λ202aλ3=(λ2)(λ3)2,所以矩阵的特征值为 2 , 3 , 3 2,3,3 2,3,3。因为矩阵 A \bm{A} A的特征值有二重根,所以 λ = 3 \lambda=3 λ=3有两个线性无关的特征向量,即 ( 3 E − A ) x (3\bm{E}-\bm{A})\bm{x} (3EA)x有两个线性无关的解。故 r ( 3 E − A ) = 1 r(3\bm{E}-\bm{A})=1 r(3EA)=1,那么 3 E − A = [ 0 − 1 − 2 0 1 − a 0 0 0 ] → [ 0 − 1 − 2 0 0 − a − 2 0 0 0 ] 3\bm{E}-\bm{A}=\begin{bmatrix}0&-1&-2\\0&1&-a\\0&0&0\end{bmatrix}\to\begin{bmatrix}0&-1&-2\\0&0&-a-2\\0&0&0\end{bmatrix} 3EA=0001102a00001002a20,可见 a = − 2 a=-2 a=2。(这道题主要利用了方程和秩的关系求解

334.设 A \bm{A} A是三阶矩阵, α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3是三维线性无关的列向量,且 A α 1 = α 2 + α 3 , A α 2 = α 1 + α 3 , A α 3 = α 1 + α 2 \bm{A\alpha}_1=\alpha_2+\alpha_3,\bm{A\alpha}_2=\alpha_1+\alpha_3,\bm{A\alpha}_3=\alpha_1+\alpha_2 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2,则和 A \bm{A} A相似的矩阵是______.

  根据已知条件,有
A ( α 1 , α 2 , α 3 ) = ( α 2 + α 3 , α 1 + α 3 , α 1 + α 2 ) = ( α 1 , α 2 , α 3 ) [ 0 1 1 1 0 1 1 1 0 ] . \bm{A}(\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3)=(\alpha_2+\alpha_3,\alpha_1+\alpha_3,\alpha_1+\alpha_2)=(\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3)\begin{bmatrix}0&1&1\\1&0&1\\1&1&0\end{bmatrix}. A(α1,α2,α3)=(α2+α3,α1+α3,α1+α2)=(α1,α2,α3)011101110.
  记 P = ( α 1 , α 2 , α 3 ) , B = [ 0 1 1 1 0 1 1 1 0 ] \bm{P}=(\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3),\bm{B}=\begin{bmatrix}0&1&1\\1&0&1\\1&1&0\end{bmatrix} P=(α1,α2,α3),B=011101110
  由 α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3是三维线性无关的列向量知 ∣ α 1 , α 2 , α 3 ∣ ≠ 0 |\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3|\ne0 α1,α2,α3=0,故 P \bm{P} P是可逆矩阵,于是由 A P = P B \bm{AP}=\bm{PB} AP=PB P − 1 A P = B \bm{P}^{-1}\bm{AP}=\bm{B} P1AP=B
  故和矩阵 A \bm{A} A相似的矩阵是 [ 0 1 1 1 0 1 1 1 0 ] \begin{bmatrix}0&1&1\\1&0&1\\1&1&0\end{bmatrix} 011101110。(这道题主要利用了矩阵乘法求解

335.已知 A \bm{A} A是三阶实对称矩阵,若正交矩阵 Q \bm{Q} Q使得 Q − 1 A Q = ( 3 0 0 0 3 0 0 0 6 ) \bm{Q}^{-1}\bm{AQ}=\begin{pmatrix}3&0&0\\0&3&0\\0&0&6\end{pmatrix} Q1AQ=300030006,如果 α 1 = ( 1 , 0 , − 1 ) T , α 2 = ( 0 , 1 , 1 ) T \bm{\alpha}_1=(1,0,-1)^{\mathrm{T}},\bm{\alpha}_2=(0,1,1)^{\mathrm{T}} α1=(1,0,1)T,α2=(0,1,1)T是矩阵 A \bm{A} A属于特征值 λ = 3 \lambda=3 λ=3的特征向量,则 Q = \bm{Q}= Q=______.

  因为实对称矩阵特征值不同特征向量正交,设 α 3 = ( x 1 , x 2 , x 3 ) T \bm{\alpha}_3=(x_1,x_2,x_3)^{\mathrm{T}} α3=(x1,x2,x3)T是矩阵 A \bm{A} A属于 λ = 6 \lambda=6 λ=6的特征向量,则
{ α 3 T α 1 = x 1 − x 3 = 0 , α 3 T α 2 = x 2 + x 3 = 0 , ⇒ α 3 = ( 1 , − 1 , 1 ) T . \begin{cases} \bm{\alpha}_3^{\mathrm{T}}\bm{\alpha}_1=x_1-x_3=0,\\ \bm{\alpha}_3^{\mathrm{T}}\bm{\alpha}_2=x_2+x_3=0, \end{cases}\Rightarrow\bm{\alpha}_3=(1,-1,1)^{\mathrm{T}}. {α3Tα1=x1x3=0,α3Tα2=x2+x3=0,α3=(1,1,1)T.
  由于 λ = 3 \lambda=3 λ=3的特征向量 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2不正交,故需正交化处理。令 β 1 = α 1 = ( 1 0 − 1 ) , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 2 ) β 1 \bm{\beta}_1=\bm{\alpha}_1=\begin{pmatrix}1\\0\\-1\end{pmatrix},\bm{\beta}_2=\bm{\alpha}_2-\cfrac{(\bm{\alpha}_2,\bm{\beta}_1)}{(\bm{\beta}_1,\bm{\beta}_2)}\bm{\beta}_1 β1=α1=101,β2=α2(β1,β2)(α2,β1)β1,再单位化得
γ 1 = 1 2 ( 1 0 − 1 ) , γ 2 = 1 6 ( 1 2 1 ) , γ 3 = 1 3 ( 1 1 1 ) . \bm{\gamma}_1=\cfrac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\-1\end{pmatrix},\bm{\gamma}_2=\cfrac{1}{\sqrt{6}}\begin{pmatrix}1\\2\\1\end{pmatrix},\bm{\gamma}_3=\cfrac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\end{pmatrix}. γ1=2 1101,γ2=6 1121,γ3=3 1111.
  那么 Q = [ 1 2 1 6 1 3 0 2 6 − 1 3 − 1 2 1 6 1 3 ] \bm{Q}=\begin{bmatrix}\cfrac{1}{\sqrt{2}}&\cfrac{1}{\sqrt{6}}&\cfrac{1}{\sqrt{3}}\\0&\cfrac{2}{\sqrt{6}}&-\cfrac{1}{\sqrt{3}}\\-\cfrac{1}{\sqrt{2}}&\cfrac{1}{\sqrt{6}}&\cfrac{1}{\sqrt{3}}\end{bmatrix} Q=2 102 16 16 26 13 13 13 1为所求。(这道题主要利用了对称矩阵正交化求解

337.已知二次型矩阵 x T A x = a x 1 2 + 2 x 2 2 + a x 3 2 + 6 x 1 x 2 + 2 x 2 x 3 \bm{x}^{\mathrm{T}}\bm{Ax}=ax_1^2+2x_2^2+ax_3^2+6x_1x_2+2x_2x_3 xTAx=ax12+2x22+ax32+6x1x2+2x2x3的秩为 2 2 2,则 a = a= a=______.

  二次型矩阵 A = [ a 3 0 3 2 1 0 1 a ] \bm{A}=\begin{bmatrix}a&3&0\\3&2&1\\0&1&a\end{bmatrix} A=a3032101a,二次型的秩为 2 2 2,即矩阵的秩 r ( A ) = 2 r(\bm{A})=2 r(A)=2
  由 ∣ A ∣ = ∣ a 3 0 3 2 1 0 1 a ∣ = 2 a 2 − 10 a |\bm{A}|=\begin{vmatrix}a&3&0\\3&2&1\\0&1&a\end{vmatrix}=2a^2-10a A=a3032101a=2a210a,且 A \bm{A} A中有二阶子式 ∣ 3 2 0 1 ∣ ≠ 0 \begin{vmatrix}3&2\\0&1\end{vmatrix}\ne0 3021=0,得当 a = 0 a=0 a=0 a = 5 a=5 a=5时,二次型的秩为 2 2 2。(这道题主要利用了矩阵的秩的定义求解

340.若二次型 f ( x 1 , x 2 , x 3 ) = a x 1 2 + 4 x 2 2 + a x 3 2 + 6 x 1 x 2 + 2 x 2 x 3 f(x_1,x_2,x_3)=ax_1^2+4x_2^2+ax_3^2+6x_1x_2+2x_2x_3 f(x1,x2,x3)=ax12+4x22+ax32+6x1x2+2x2x3是正定的,则 a a a的取值范围是______.

  二次型 f f f的矩阵为 A = [ a 3 0 3 4 1 0 1 a ] \bm{A}=\begin{bmatrix}a&3&0\\3&4&1\\0&1&a\end{bmatrix} A=a3034101a,因为 f f f正定等价于 A \bm{A} A的顺序主子式全大于零,即
Δ 1 = a > 0 , Δ 2 = ∣ a 3 3 4 ∣ = 4 a − 9 > 0 , Δ 3 = ∣ A ∣ = 4 a 2 − 10 a > 0. \Delta_1=a>0,\\ \Delta_2=\begin{vmatrix}a&3\\3&4\end{vmatrix}=4a-9>0,\\ \Delta_3=|\bm{A}|=4a^2-10a>0. Δ1=a>0,Δ2=a334=4a9>0,Δ3=A=4a210a>0.
  故 f f f正定等价于 a > 5 2 a>\cfrac{5}{2} a>25。(这道题主要利用了正定矩阵的性质求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值