线性代数张宇9讲 第五讲 向量

目录

例题五

例5.9  设 A \bm{A} A n n n阶矩阵,若存在正整数 k k k,使线性方程组 A k x = 0 \bm{A}^k\bm{x}=\bm{0} Akx=0有解向量 α \bm{\alpha} α,且 A k − 1 α ≠ 0 \bm{A}^{k-1}\bm{\alpha}\ne\bm{0} Ak1α=0,证明:向量组 α , A α , ⋯   , A k − 1 α \bm{\alpha},\bm{A}\bm{\alpha},\cdots,\bm{A}^{k-1}\bm{\alpha} α,Aα,,Ak1α线性无关。

  设有一组常数 λ 1 , λ 2 , ⋯   , λ k \lambda_1,\lambda_2,\cdots,\lambda_k λ1,λ2,,λk,使得
λ 1 α + λ 2 A α + ⋯ + λ k A k − 1 α = 0 , (1) \lambda_1\bm{\alpha}+\lambda_2\bm{A}\bm{\alpha}+\cdots+\lambda_k\bm{A}^{k-1}\bm{\alpha}=\bm{0},\tag{1} λ1α+λ2Aα++λkAk1α=0,(1)
  式 ( 1 ) (1) (1)两端左乘 A k − 1 \bm{A}^{k-1} Ak1,得
λ 1 A k − 1 α + λ 2 A k α + ⋯ + λ k A 2 k − 2 α = 0 , \lambda_1\bm{A}^{k-1}\bm{\alpha}+\lambda_2\bm{A}^k\bm{\alpha}+\cdots+\lambda_k\bm{A}^{2k-2}\bm{\alpha}=\bm{0}, λ1Ak1α+λ2Akα++λkA2k2α=0,
  由题设条件 A k α = 0 \bm{A}^{k}\bm{\alpha}=\bm{0} Akα=0,知 A k + 1 α = A k + 2 α = ⋯ = A 2 k − 2 α = 0 \bm{A}^{k+1}\bm{\alpha}=\bm{A}^{k+2}\bm{\alpha}=\cdots=\bm{A}^{2k-2}\bm{\alpha}=\bm{0} Ak+1α=Ak+2α==A2k2α=0,从而得 A k − 1 α = 0 \bm{A}^{k-1}\bm{\alpha}=\bm{0} Ak1α=0
  由于 A k − 1 α ≠ 0 \bm{A}^{k-1}\bm{\alpha}\ne\bm{0} Ak1α=0,故 λ 1 = 0 \lambda_1=0 λ1=0,代入式 ( 1 ) (1) (1)
λ 2 A α + λ 3 A 2 α + ⋯ + λ k A k − 1 α = 0 , (2) \lambda_2\bm{A}\bm{\alpha}+\lambda_3\bm{A}^2\bm{\alpha}+\cdots+\lambda_k\bm{A}^{k-1}\bm{\alpha}=\bm{0},\tag{2} λ2Aα+λ3A2α++λkAk1α=0,(2)
  将式 ( 2 ) (2) (2)两端左乘 A k − 2 \bm{A}^{k-2} Ak2,同上可证 λ 2 = 0 \lambda_2=0 λ2=0。同理可证 λ 3 = λ 4 = ⋯ = λ k = 0 \lambda_3=\lambda_4=\cdots=\lambda_k=0 λ3=λ4==λk=0,从而得证 α , A α , ⋯   , A k − 1 α \bm{\alpha},\bm{A}\bm{\alpha},\cdots,\bm{A}^{k-1}\bm{\alpha} α,Aα,,Ak1α线性无关。(这道题主要利用了构造方程求解

例5.14  设 α 1 , α 2 , α 3 , α 4 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3,\bm{\alpha}_4 α1,α2,α3,α4 n ( n > 4 ) n(n>4) n(n>4)阶方阵 A \bm{A} A 4 4 4个特征向量,它们分别属于不同的特征值 λ 1 , λ 2 , λ 3 , λ 4 \lambda_1,\lambda_2,\lambda_3,\lambda_4 λ1,λ2,λ3,λ4,记 β = α 1 + α 2 + α 3 + α 4 \bm{\beta}=\bm{\alpha}_1+\bm{\alpha}_2+\bm{\alpha}_3+\bm{\alpha}_4 β=α1+α2+α3+α4。证明: β , A β , A 2 β , A 3 β \bm{\beta},\bm{A\beta},\bm{A}^2\bm{\beta},\bm{A}^3\bm{\beta} β,Aβ,A2β,A3β线性无关。

  设存在一组数 k 1 , k 2 , k 3 , k 4 k_1,k_2,k_3,k_4 k1,k2,k3,k4,使
k 1 β + k 2 A β + k 3 A 2 β + k 4 A 3 β = 0 . (1) k_1\bm{\beta}+k_2\bm{A\beta}+k_3\bm{A}^2\bm{\beta}+k_4\bm{A}^3\bm{\beta}=\bm{0}.\tag{1} k1β+k2Aβ+k3A2β+k4A3β=0.(1)
  由题设 β = α 1 + α 2 + α 3 + α 4 \bm{\beta}=\bm{\alpha}_1+\bm{\alpha}_2+\bm{\alpha}_3+\bm{\alpha}_4 β=α1+α2+α3+α4,利用特征向量的性质可得
{ A β = λ 1 α 1 + λ 2 α 2 + λ 3 α 3 + λ 4 α 4 , A 2 β = λ 1 2 α 1 + λ 2 2 α 2 + λ 3 2 α 3 + λ 4 2 α 4 , A 3 β = λ 1 3 α 1 + λ 2 3 α 2 + λ 3 3 α 3 + λ 4 3 α 4 . (2) \begin{cases} \bm{A\beta}=\lambda_1\bm{\alpha}_1+\lambda_2\bm{\alpha}_2+\lambda_3\bm{\alpha}_3+\lambda_4\bm{\alpha}_4,\\ \bm{A}^2\bm{\beta}=\lambda_1^2\bm{\alpha}_1+\lambda_2^2\bm{\alpha}_2+\lambda_3^2\bm{\alpha}_3+\lambda_4^2\bm{\alpha}_4,\\ \bm{A}^3\bm{\beta}=\lambda_1^3\bm{\alpha}_1+\lambda_2^3\bm{\alpha}_2+\lambda_3^3\bm{\alpha}_3+\lambda_4^3\bm{\alpha}_4. \end{cases}\tag{2} Aβ=λ1α1+λ2α2+λ3α3+λ4α4,A2β=λ12α1+λ22α2+λ32α3+λ42α4,A3β=λ13α1+λ23α2+λ33α3+λ43α4.(2)
  将 ( 2 ) (2) (2)式一并代入 ( 1 ) (1) (1)式可有
k 1 ( α 1 + α 2 + α 3 + α 4 ) + k 2 ( λ 1 α 1 + λ 2 α 2 + λ 3 α 3 + λ 4 α 4 ) + k 3 ( λ 1 2 α 1 + λ 2 2 α 2 + λ 3 2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值