线性代数张宇9讲 第三讲 矩阵的基本概念与运算

例题三

例3.2  设 A = [ 1 2 − 1 − 2 4 2 3 6 − 3 ] \bm{A}=\begin{bmatrix}1&2&-1\\-2&4&2\\3&6&-3\end{bmatrix} A=123246123,则 A n = \bm{A}^n= An=__________。


A = [ 1 2 − 1 − 2 4 2 3 6 − 3 ] = [ 1 − 2 3 ] [ 1 2 − 1 ] = 记 α T β , \bm{A}=\begin{bmatrix}1&2&-1\\-2&4&2\\3&6&-3\end{bmatrix}=\begin{bmatrix}1\\-2\\3\end{bmatrix}\begin{bmatrix}1&2&-1\end{bmatrix}\xlongequal{\text{记}}\bm{\alpha}^\mathrm{T}\bm{\beta}, A=123246123=123[121] αTβ,
  则 A n = ( α T β ) n = ( α T β ) ( α T β ) ⋯ ( α T β ) = α T ( β α T ) ( β α T ) ⋯ ( β α T ) β = α T ( β α T ) n − 1 β \bm{A}^n=(\bm{\alpha}^\mathrm{T}\bm{\beta})^n=(\bm{\alpha}^\mathrm{T}\bm{\beta})(\bm{\alpha}^\mathrm{T}\bm{\beta})\cdots(\bm{\alpha}^\mathrm{T}\bm{\beta})=\bm{\alpha}^\mathrm{T}(\bm{\beta}\bm{\alpha}^\mathrm{T})(\bm{\beta}\bm{\alpha}^\mathrm{T})\cdots(\bm{\beta}\bm{\alpha}^\mathrm{T})\bm{\beta}=\bm{\alpha}^\mathrm{T}(\bm{\beta}\bm{\alpha}^\mathrm{T})^{n-1}\bm{\beta} An=(αTβ)n=(αTβ)(αTβ)(αTβ)=αT(βαT)(βαT)(βαT)β=αT(βαT)n1β,其中 β α T = [ 1 2 − 1 ] [ 1 − 2 3 ] = − 6 \bm{\beta}\bm{\alpha}^\mathrm{T}=\begin{bmatrix}1&2&-1\end{bmatrix}\begin{bmatrix}1\\-2\\3\end{bmatrix}=-6 βαT=[121]123=6,故 A n = ( − 6 ) n − 1 [ 1 2 − 1 − 2 4 2 3 6 − 3 ] \bm{A}^n=(-6)^{n-1}\begin{bmatrix}1&2&-1\\-2&4&2\\3&6&-3\end{bmatrix} An=(6)n1123246123。(这道题主要利用了矩阵运算的结合律求解

例3.7  已知 A = [ 1 1 0 0 1 1 0 0 1 ] \bm{A}=\begin{bmatrix}1&1&0\\0&1&1\\0&0&1\end{bmatrix} A=100110011,求 A n \bm{A}^n An


A = [ 1 1 0 0 1 1 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] + [ 0 1 0 0 0 1 0 0 0 ] = E + B , \bm{A}=\begin{bmatrix}1&1&0\\0&1&1\\0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}+\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}=\bm{E}+\bm{B}, A=100110011=100010001+000100010=E+B,
  则 A n = ( E + B ) n = E n + n E n − 1 B + n ( n − 1 ) 2 ! E n − 2 B 2 + n ( n − 1 ) ( n − 2 ) 3 ! E n − 3 B 3 + ⋯ + B n \bm{A}^n=(\bm{E}+\bm{B})^n=\bm{E}^n+n\bm{E}^{n-1}\bm{B}+\cfrac{n(n-1)}{2!}\bm{E}^{n-2}\bm{B}^2+\cfrac{n(n-1)(n-2)}{3!}\bm{E}^{n-3}\bm{B}^3+\cdots+\bm{B}^n An=(E+B)n=En+nEn1B+2!n(n1)En2B2+3!n(n1)(n2)En3B3++Bn,因 E \bm{E} E和任何矩阵可交换,故展开式和初等代数中的展开式一样。因
B = [ 0 1 0 0 0 1 0 0 0 ] , B 2 = [ 0 1 0 0 0 1 0 0 0 ] [ 0 1 0 0 0 1 0 0 0 ] = [ 0 0 1 0 0 0 0 0 0 ] , B 3 = [ 0 0 1 0 0 0 0 0 0 ] [ 0 1 0 0 0 1 0 0 0 ] = [ 0 0 0 0 0 0 0 0 0 ] , \bm{B}=\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix},\bm{B}^2=\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}=\begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix},\\ \bm{B}^3=\begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}, B=000100010,B2=000100010000100010=000000100,B3=000000100000100010=000000000,
  故 B k = O , k ⩾ 3 \bm{B}^k=\bm{O},k\geqslant3 Bk=O,k3,所以
A n = E + n B + n ( n − 1 ) 2 B 2 = [ 1 0 0 0 1 0 0 0 1 ] + [ 0 n 0 0 0 n 0 0 0 ] + [ 0 0 n ( n − 1 ) 2 0 0 0 0 0 0 ] = [ 1 n n ( n − 1 ) 2 0 1 n 0 0 1 ] \begin{aligned} \bm{A}^n&=\bm{E}+n\bm{B}+\cfrac{n(n-1)}{2}\bm{B}^2\\ &=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}+\begin{bmatrix}0&n&0\\0&0&n\\0&0&0\end{bmatrix}+\begin{bmatrix}0&0&\cfrac{n(n-1)}{2}\\0&0&0\\0&0&0\end{bmatrix}=\begin{bmatrix}1&n&\cfrac{n(n-1)}{2}\\0&1&n\\0&0&1\end{bmatrix} \end{aligned} An=E+nB+2n(n1)B2=100010001+000n000n0+0000002n(n1)00=100n102n(n1)n1
这道题主要利用了二项式展开求解

例3.11   设 A = E − 2 ξ ξ T \bm{A}=\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T} A=E2ξξT,其中 ξ = [ x 1 , x 2 , ⋯   , x n ] T \bm{\xi}=\begin{bmatrix}x_1,x_2,\cdots,x_n\end{bmatrix}^\mathrm{T} ξ=[x1,x2,,xn]T,且 ξ ξ T = 1 \bm{\xi}\bm{\xi}^\mathrm{T}=1 ξξT=1。证明:

(1) A \bm{A} A是对称矩阵;

   A T = ( E − 2 ξ ξ T ) T = E T − 2 ( ξ ξ T ) T = E − 2 ξ ξ T = A \bm{A}^\mathrm{T}=(\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T})^\mathrm{T}=\bm{E}^\mathrm{T}-2(\bm{\xi}\bm{\xi}^\mathrm{T})^\mathrm{T}=\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T}=\bm{A} AT=(E2ξξT)T=ET2(ξξT)T=E2ξξT=A,故 A \bm{A} A是对称矩阵。

(2) A 2 = E \bm{A}^2=\bm{E} A2=E


A 2 = ( E − 2 ξ ξ T ) ( E − 2 ξ ξ T ) = E − 2 ξ ξ T − 2 ξ ξ T + 4 ξ ξ T ξ ξ T = E − 4 ξ ξ T + 4 ξ ( ξ T ξ ) ξ T = E . \begin{aligned} \bm{A}^2&=(\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T})(\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T})=\bm{E}-2\bm{\xi}\bm{\xi}^\mathrm{T}-2\bm{\xi}\bm{\xi}^\mathrm{T}+4\bm{\xi}\bm{\xi}^\mathrm{T}\bm{\xi}\bm{\xi}^\mathrm{T}\\ &=\bm{E}-4\bm{\xi}\bm{\xi}^\mathrm{T}+4\bm{\xi}(\bm{\xi}^\mathrm{T}\bm{\xi})\bm{\xi}^\mathrm{T}=\bm{E}. \end{aligned} A2=(E2ξξT)(E2ξξT)=E2ξξT2ξξT+4ξξTξξT=E4ξξT+4ξ(ξTξ)ξT=E.

(3) A \bm{A} A是正交矩阵。

  由 ( 1 ) , ( 2 ) (1),(2) (1),(2)知, A T = A , A 2 = E \bm{A}^\mathrm{T}=\bm{A},\bm{A}^2=\bm{E} AT=A,A2=E,得 A T A = E \bm{A}^\mathrm{T}\bm{A}=\bm{E} ATA=E,故 A \bm{A} A是正交矩阵。(这道题主要利用了矩阵性质求解

新版例题三

例3.8

在这里插入图片描述

例3.11

在这里插入图片描述

例3.15

在这里插入图片描述

例3.16

在这里插入图片描述

例3.25

在这里插入图片描述

新版习题三

3.4

在这里插入图片描述

在这里插入图片描述

3.5

在这里插入图片描述

在这里插入图片描述

3.7

在这里插入图片描述

在这里插入图片描述

3.8

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.9

在这里插入图片描述

在这里插入图片描述

3.10

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.12

在这里插入图片描述

在这里插入图片描述

3.14

在这里插入图片描述

在这里插入图片描述

3.16

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.18

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值