概率论与数理统计张宇9讲 第四讲 多维随机变量及其分布

例题四

例4.2  二维随机变量的概率分布为
若随机事件 { X = 0 } \{X=0\} {X=0} { X + Y = 1 } \{X+Y=1\} {X+Y=1}相互独立,则(  )
( A ) a = 0.2 , b = 0.3 ; (A)a=0.2,b=0.3; (A)a=0.2,b=0.3;
( B ) a = 0.1 , b = 0.4 ; (B)a=0.1,b=0.4; (B)a=0.1,b=0.4;
( C ) a = 0.3 , b = 0.2 ; (C)a=0.3,b=0.2; (C)a=0.3,b=0.2;
( D ) a = 0.4 , b = 0.1. (D)a=0.4,b=0.1. (D)a=0.4,b=0.1.

  由联合分布、边缘分布及条件分布的性质,有
P { X = 0 } = p 11 + p 12 = 0.4 + a , P { X + Y = 1 } = p 12 + p 21 = a + b , p 11 + p 12 + p 21 + p 22 = a + b + 0.5 = 1 ⇒ a + b = 0.5. P\{X=0\}=p_{11}+p_{12}=0.4+a,\\ P\{X+Y=1\}=p_{12}+p_{21}=a+b,\\ p_{11}+p_{12}+p_{21}+p_{22}=a+b+0.5=1\Rightarrow a+b=0.5. P{X=0}=p11+p12=0.4+a,P{X+Y=1}=p12+p21=a+b,p11+p12+p21+p22=a+b+0.5=1a+b=0.5.
  又 { X = 0 } \{X=0\} {X=0} { X + Y = 1 } \{X+Y=1\} {X+Y=1}相互独立,有
P { X = 0 , X + Y = 1 } = P { X = 0 } ⋅ P { X + Y = 1 } = ( 0.4 + a ) ( a + b ) = 0.5 ( 0.4 + a ) . \begin{aligned} P\{X=0,X+Y=1\}&=P\{X=0\}\cdot P\{X+Y=1\}\\ &=(0.4+a)(a+b)=0.5(0.4+a). \end{aligned} P{X=0,X+Y=1}=P{X=0}P{X+Y=1}=(0.4+a)(a+b)=0.5(0.4+a).
  因此 0.5 ( 0.4 + a ) = a 0.5(0.4+a)=a 0.5(0.4+a)=a,解得 a = 0.4 , b = 0.5 − 0.4 = 0.1 a=0.4,b=0.5-0.4=0.1 a=0.4,b=0.50.4=0.1,故选择 ( D ) (D) (D)。(这道题主要利用了条件概率求解

习题四

4.11  设二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y)。证明: X X X Y Y Y相互独立的充分必要条件是 f ( x , y ) f(x,y) f(x,y)可分离变量,即 f ( x , y ) = h ( x ) g ( y ) f(x,y)=h(x)g(y) f(x,y)=h(x)g(y)。又问 h ( x ) , g ( y ) h(x),g(y) h(x),g(y)与边缘概率密度有什么关系?

  记 X X X Y Y Y的边缘概率密度分别为 f X ( x ) f_X(x) fX(x) f Y ( y ) f_Y(y) fY(y)
  必要性是显然的。因为 X X X Y Y Y相互独立,则 f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y),即 f ( x , y ) f(x,y) f(x,y)可分离变量,其中 h ( x ) = f X ( x ) , g ( y ) = f Y ( y ) h(x)=f_X(x),g(y)=f_Y(y) h(x)=fX(x),g(y)=fY(y)
  下面证充分性。因为 f ( x , y ) = h ( x ) g ( y ) f(x,y)=h(x)g(y) f(x,y)=h(x)g(y),所以记
k 1 = ∫ − ∞ + ∞ h ( x ) d x , k 2 = ∫ − ∞ + ∞ g ( y ) d y . k_1=\displaystyle\int^{+\infty}_{-\infty}h(x)\mathrm{d}x,\quad k_2=\displaystyle\int^{+\infty}_{-\infty}g(y)\mathrm{d}y. k1=+h(x)dx,k2=+g(y)dy.
  由概率密度的性质得
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = ∫ − ∞ + ∞ ∫ − ∞ + ∞ h ( x ) g ( y ) d x d y = ∫ − ∞ + ∞ h ( x ) d x ∫ − ∞ + ∞ g ( y ) d y = k 1 k 2 = 1. \begin{aligned} \displaystyle\int^{+\infty}_{-\infty}\displaystyle\int^{+\infty}_{-\infty}f(x,y)\mathrm{d}x\mathrm{d}y&=\displaystyle\int^{+\infty}_{-\infty}\displaystyle\int^{+\infty}_{-\infty}h(x)g(y)\mathrm{d}x\mathrm{d}y\\ &=\displaystyle\int^{+\infty}_{-\infty}h(x)\mathrm{d}x\displaystyle\int^{+\infty}_{-\infty}g(y)\mathrm{d}y=k_1k_2=1. \end{aligned} ++f(x,y)dxdy=++h(x)g(y)dxdy=+h(x)dx+g(y)dy=k1k2=1.
  又因为
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = h ( x ) ∫ − ∞ + ∞ g ( y ) d y = k 2 h ( x ) , f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x = g ( y ) ∫ − ∞ + ∞ h ( x ) d x = k 1 g ( y ) , f_X(x)=\displaystyle\int^{+\infty}_{-\infty}f(x,y)\mathrm{d}y=h(x)\displaystyle\int^{+\infty}_{-\infty}g(y)\mathrm{d}y=k_2h(x),\\ f_Y(y)=\displaystyle\int^{+\infty}_{-\infty}f(x,y)\mathrm{d}x=g(y)\displaystyle\int^{+\infty}_{-\infty}h(x)\mathrm{d}x=k_1g(y), fX(x)=+f(x,y)dy=h(x)+g(y)dy=k2h(x),fY(y)=+f(x,y)dx=g(y)+h(x)dx=k1g(y),
  由此可得
f ( x , y ) = h ( x ) g ( y ) = k 1 k 2 h ( x ) g ( y ) = [ k 2 h ( x ) ] [ k 1 g ( y ) ] = f X ( x ) f Y ( y ) , \begin{aligned} f(x,y)&=h(x)g(y)=k_1k_2h(x)g(y)\\ &=[k_2h(x)][k_1g(y)]=f_X(x)f_Y(y), \end{aligned} f(x,y)=h(x)g(y)=k1k2h(x)g(y)=[k2h(x)][k1g(y)]=fX(x)fY(y),
  所以 X X X Y Y Y相互独立,且从以上的证明过程可知 f X ( x ) = k 2 h ( x ) , f Y ( y ) = k 1 g ( y ) f_X(x)=k_2h(x),f_Y(y)=k_1g(y) fX(x)=k2h(x),fY(y)=k1g(y),且 k 1 k 2 = 1 k_1k_2=1 k1k2=1。(这道题主要利用了概率密度的性质求解

新版习题四

4.1

在这里插入图片描述

在这里插入图片描述

4.6

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值