概率论与数理统计张宇9讲 第九讲 参数估计和假设检验

目录

例题九

例9.16  设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自总体 X X X的一个简单随机样本,则样本标准差 S S S是总体标准差 σ \sigma σ的(  )
( A ) (A) (A)无偏估计量;
( B ) (B) (B)最大似然估计量;
( C ) (C) (C)相合估计量;
( D ) (D) (D)以上均不正确。

  本题主要考察以下结论。
  对于来自总体 X X X的样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,其样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2=\cfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2 S2=n11i=1n(XiX)2 σ 2 \sigma^2 σ2的无偏估计量,但其样本标准差 S S S不是总体标准差 σ \sigma σ的无偏估计量。
  对于来自总体 X X X的样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,二阶样本中心距 n − 1 n S 2 \cfrac{n-1}{n}S^2 nn1S2 σ 2 \sigma^2 σ2的最大似然估计量, n − 1 n S \sqrt{\cfrac{n-1}{n}}S nn1 S σ \sigma σ的最大似然估计量。
  对于来自总体体 X X X的样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn S 2 S^2 S2 σ 2 \sigma^2 σ2的相合估计量,因为样本矩具有相合性,即当 n → ∞ n\to\infty n时,有
1 n ∑ i = 1 n X i 2 → P E ( X 2 ) , X ‾ = 1 n ∑ i = 1 n X i → P E ( X ) . \cfrac{1}{n}\sum\limits_{i=1}^nX_i^2\xrightarrow[]{P}E(X^2),\quad\overline{X}=\cfrac{1}{n}\sum\limits_{i=1}^nX_i\xrightarrow[]{P}E(X). n1i=1nXi2P E(X2),X=n1i=1nXiP E(X).
  所以
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ‾ ) → P E ( X 2 ) − ( E ( X ) ) 2 = D ( X ) = σ 2 . \begin{aligned} S^2&=\cfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2=\cfrac{1}{n-1}\left(\sum\limits_{i=1}^nX_i^2-n\overline{X}\right)\\ &\xrightarrow[]{P}E(X^2)-(E(X))^2=D(X)=\sigma^2. \end{aligned} S2=n11i=1n(XiX)2=n11(i=1nXi2nX)P E(X2)(E(X))2=D(X)=σ2.
  从而有 S = S 2 → P D ( X ) = σ 2 = σ S=\sqrt{S^2}\xrightarrow[]{P}\sqrt{D(X)}=\sqrt{\sigma^2}=\sigma S=S2 P D(X) =σ2 =σ
  综上分析,本题应该选择 ( C ) (C) (C)。(这道题主要利用了估计量的定义求解

例9.20  从正态分布 X ∼ N ( μ 1 , σ 2 ) X\sim N(\mu_1,\sigma^2) XN(μ1,σ2) Y ∼ N ( μ 2 , σ 2 ) Y\sim N(\mu_2,\sigma^2) YN(μ2,σ2)中随意抽取容量分别为 n 1 , n 2 n_1,n_2 n1,n2的两个独立样本,样本方差分别为 S X 2 , S Y 2 S_X^2,S_Y^2 SX2,SY2。证明:对任意常数 a , b a,b a,b,只要 a + b = 1 a+b=1 a+b=1,统计量 σ ^ 2 = a S X 2 + b S Y 2 \hat{\sigma}^2=aS_X^2+bS_Y^2 σ^2=aSX2+bSY2都是 σ 2 \sigma^2 σ2的无偏估计,并确定 a , b a,b a,b使 D ( σ ^ 2 ) D(\hat{\sigma}^2) D(σ^2)达到最小。

  由题设知 E ( S X 2 ) = σ 2 , E ( S Y 2 ) = σ 2 E(S_X^2)=\sigma^2,E(S_Y^2)=\sigma^2 E(SX2)=σ2,E(SY2)=σ2 S X 2 S_X^2 SX2 S Y 2 S_Y^2 SY2相互独立,且
( n 1 − 1 ) S X 2 σ 2 ∼ χ 2 ( n 1 − 1 ) , ( n 2 − 1 ) S Y 2 σ 2 ∼ χ 2 ( n 2 − 1 ) . \cfrac{(n_1-1)S_X^2}{\sigma^2}\sim\chi^2(n_1-1),\\ \cfrac{(n_2-1)S_Y^2}{\sigma^2}\sim\chi^2(n_2-1). σ2(n11)SX2χ2(n11),σ2(n21)SY2χ2(n21).
  若 a + b = 1 a+b=1 a+b=1,则 E ( σ ^ 2 ) = a E ( S X 2 ) + b E ( S Y 2 ) = a σ 2 + b σ 2 = σ 2 E(\hat{\sigma}^2)=aE(S_X^2)+bE(S_Y^2)=a\sigma^2+b\sigma^2=\sigma^2 E(σ^2)=aE(SX2)+bE(SY2)=aσ2+bσ2=σ2,故 σ ^ 2 \hat{\sigma}^2 σ^2 σ 2 \sigma^2 σ2的无偏估计。又
D [ ( n 1 − 1 ) S X 2 σ 2 ] = ( n 1 − 1 ) 2 σ 4 D ( S X 2 ) = 2 ( n 1 − 1 ) , D ( S X 2 ) = 2 σ 4 n 1 − 1 , D [ ( n 2 − 1 ) S Y 2 σ 2 ] = ( n 2 − 1 ) 2 σ 4 D ( S Y 2 ) = 2 ( n 2 − 1 ) , D ( S Y 2 ) = 2 σ 4 n 2 − 1 , D ( σ ^ 2 ) = D ( a S X 2 + b S Y 2 ) = a 2 D ( S X 2 ) + b 2 D ( S Y 2 ) = ( a 2 n 1 − 1 + b 2 n 2 − 1 ) 2 σ 4 = [ a 2 n 1 − 1 + ( 1 − a ) 2 n 2 − 1 ] 2 σ 4 . D\left[\cfrac{(n_1-1)S_X^2}{\sigma^2}\right]=\cfrac{(n_1-1)^2}{\sigma^4}D(S_X^2)=2(n_1-1),\quad D(S_X^2)=\cfrac{2\sigma^4}{n_1-1},\\ D\left[\cfrac{(n_2-1)S_Y^2}{\sigma^2}\right]=\cfrac{(n_2-1)^2}{\sigma^4}D(S_Y^2)=2(n_2-1),\quad D(S_Y^2)=\cfrac{2\sigma^4}{n_2-1},\\ \quad\\ \begin{aligned} D(\hat{\sigma}^2)&=D(aS_X^2+bS_Y^2)=a^2D(S_X^2)+b^2D(S_Y^2)\\ &=\left(\cfrac{a^2}{n_1-1}+\cfrac{b^2}{n_2-1}\right)2\sigma^4\\ &=\left[\cfrac{a^2}{n_1-1}+\cfrac{(1-a)^2}{n_2-1}\right]2\sigma^4. \end{aligned} D[σ2(n11)SX2]=σ4(n11)2D(SX2)=2(n11),D(SX2)=n112σ4,D[σ2(n21)SY2]=σ4(n21)2D(SY2)=2(n21),D(SY2)=n212σ4,D(σ^2)=D(aSX2+bSY2)=a2D(SX2)+b2D(SY2)=(n11a2+n21b2)2σ4=[n11a2+n21(1a)2]2σ4.
  记 g ( a ) = a 2 n 1 − 1 + ( 1 − a ) 2 n 2 − 1 g(a)=\cfrac{a^2}{n_1-1}+\cfrac{(1-a)^2}{n_2-1} g(a)=n11a2+n21(1a)2。令 g ′ ( a ) = 2 a n 1 − 1 − 2 ( 1 − a ) n 2 − 1 = 0 g'(a)=\cfrac{2a}{n_1-1}-\cfrac{2(1-a)}{n_2-1}=0 g(a)=n112an212(1a)=0,解得
a = n 1 − 1 n 1 + n 2 − 2 , b = 1 − a = n 2 − 1 n 1 + n 2 − 2 . a=\cfrac{n_1-1}{n_1+n_2-2},\quad b=1-a=\cfrac{n_2-1}{n_1+n_2-2}. a=n1+n22n11,b=1a=n1+n22n21.
  又 g ′ ′ ( a ) = 2 n 1 − 1 + 2 n 2 − 1 > 0 g''(a)=\cfrac{2}{n_1-1}+\cfrac{2}{n_2-1}>0 g(a)=n112+n212>0,所以当 a = n 1 − 1 n 1 + n 2 − 2 , b = 1 − a = n 2 − 1 n 1 + n 2 − 2 a=\cfrac{n_1-1}{n_1+n_2-2},b=1-a=\cfrac{n_2-1}{n_1+n_2-2} a=n1+n22n11,b=1a=n1+n22n21时, D ( σ ^ 2 ) D(\hat{\sigma}^2) D(σ^2)达到最小。(这道题主要利用了公式变换求解

习题七

9.7  设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是取自正态总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的简单随机样本,样本均值 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\cfrac{1}{n}\sum\limits_{i=1}^nX_i X=n1i=1nXi

(1)记 S 1 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 , S 2 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 , S 3 2 = 1 n + 1 ∑ i = 1 n ( X i − X ‾ ) 2 S_1^2=\cfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2,S_2^2=\cfrac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2,S_3^2=\cfrac{1}{n+1}\sum\limits_{i=1}^n(X_i-\overline{X})^2 S12=n11i=1n(XiX)2,S22=n1i=1n(XiX)2,S32=n+11i=1n(XiX)2,试问 S i 2 ( i = 1 , 2 , 3 ) S_i^2(i=1,2,3) Si2(i=1,2,3)中哪一个是 σ 2 \sigma^2 σ2的无偏估计?哪一个是 σ 2 \sigma^2 σ2的一致估计?哪一个是方差最小?

  由于总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),所以 S 0 2 = ∑ i = 1 n ( X i − X ‾ σ ) 2 ∼ χ 2 ( n − 1 ) S_0^2=\sum\limits_{i=1}^n\left(\cfrac{X_i-\overline{X}}{\sigma}\right)^2\sim\chi^2(n-1) S02=i=1n(σXiX)2χ2(n1),再根据辛钦大数定律与依概率收敛性质可求得(1)的所有解答。因为 S 0 2 ∼ χ 2 ( n − 1 ) S_0^2\sim\chi^2(n-1) S02χ2(n1),所以, E ( S 0 2 ) = n − 1 , D ( S 0 2 ) = 2 ( n − 1 ) E(S_0^2)=n-1,D(S_0^2)=2(n-1) E(S02)=n1,D(S02)=2(n1)
  又 S 1 2 = σ 2 n − 1 S 0 2 , S 2 2 = σ 2 n S 0 2 , S 3 2 = σ 2 n + 1 S 0 2 S_1^2=\cfrac{\sigma^2}{n-1}S_0^2,S_2^2=\cfrac{\sigma^2}{n}S_0^2,S_3^2=\cfrac{\sigma^2}{n+1}S_0^2 S12=n1σ2S02,S22=nσ2S02,S32=n+1σ2S02,所以
E ( S 1 2 ) = σ 2 n − 1 E ( S 0 2 ) = σ 2 , E ( S 2 2 ) = σ 2 n E ( S 0 2 ) = n n − 1 σ 2 , E ( S 3 2 ) = σ 2 n + 1 E ( S 0 2 ) = n − 1 n + 1 σ 2 , D ( S 1 2 ) = σ 4 ( n − 1 ) 2 D ( S 0 2 ) = 2 ( n − 1 ) ( n − 1 ) 2 σ 4 , D ( S 2 2 ) = σ 4 n 2 D ( S 0 2 ) = 2 ( n − 1 ) n 2 σ 4 , D ( S 3 2 ) = σ 4 ( n + 1 ) 2 D ( S 0 2 ) = 2 ( n − 1 ) ( n + 1 ) 2 σ 4 , D ( S 1 2 ) > D ( S 2 2 ) > D ( S 3 2 ) . E(S_1^2)=\cfrac{\sigma^2}{n-1}E(S_0^2)=\sigma^2,\\ E(S_2^2)=\cfrac{\sigma^2}{n}E(S_0^2)=\cfrac{n}{n-1}\sigma^2,\\ E(S_3^2)=\cfrac{\sigma^2}{n+1}E(S_0^2)=\cfrac{n-1}{n+1}\sigma^2,\\ D(S_1^2)=\cfrac{\sigma^4}{(n-1)^2}D(S_0^2)=\cfrac{2(n-1)}{(n-1)^2}\sigma^4,\\ D(S_2^2)=\cfrac{\sigma^4}{n^2}D(S_0^2)=\cfrac{2(n-1)}{n^2}\sigma^4,\\ D(S_3^2)=\cfrac{\sigma^4}{(n+1)^2}D(S_0^2)=\cfrac{2(n-1)}{(n+1)^2}\sigma^4,\\ D(S_1^2)>D(S_2^2)>D(S_3^2). E(S12)=n1σ2E(S02)=σ2,E(S22)=nσ2E(S02)=n1nσ2,E(S32)=n+1σ2E(S02)=n+1n1σ2,D(S12)=(n1)2σ4D(S02)=(n1)22(n1)σ4,D(S22)=n2σ4D(S02)=n22(n1)σ4,D(S32)=(n+1)2σ4D(S02)=(n+1)22(n1)σ4,D(S12)>D(S22)>D(S32).
  故 S 1 2 S_1^2 S12 σ 2 \sigma^2 σ2的无偏估计, S 3 2 S_3^2 S32的方差最小。
  由辛钦大数定律, X ‾ → P E ( X ) = μ , 1 n ∑ i = 1 n X i 2 → P σ 2 + μ 2 \overline{X}\xrightarrow[]{P}E(X)=\mu,\cfrac{1}{n}\sum\limits_{i=1}^nX_i^2\xrightarrow[]{P}\sigma^2+\mu^2 XP E(X)=μ,n1i=1nXi2P σ2+μ2,故
S 2 2 = 1 n ∑ i = 1 n X i 2 − X ‾ 2 → P σ 2 + μ 2 − μ 2 = σ 2 S 1 2 = n n − 1 S 2 2 → P σ 2 , S 3 2 = n n + 1 S 2 2 → P σ 2 , S_2^2=\cfrac{1}{n}\sum\limits_{i=1}^nX_i^2-\overline{X}^2\xrightarrow[]{P}\sigma^2+\mu^2-\mu^2=\sigma^2\\ S_1^2=\cfrac{n}{n-1}S_2^2\xrightarrow[]{P}\sigma^2,\\ S_3^2=\cfrac{n}{n+1}S_2^2\xrightarrow[]{P}\sigma^2, S22=n1i=1nXi2X2P σ2+μ2μ2=σ2S12=n1nS22P σ2,S32=n+1nS22P σ2,
  即 S i 2 ( i = 1 , 2 , 3 ) S_i^2(i=1,2,3) Si2(i=1,2,3)都是 σ 2 \sigma^2 σ2的一致估计。

(2)如果 μ \mu μ已知,求 k 1 k_1 k1使 σ ^ 1 = k 1 ∑ i = 1 n ∣ X i − μ ∣ \hat{\sigma}_1=k_1\sum\limits_{i=1}^n|X_i-\mu| σ^1=k1i=1nXiμ σ \sigma σ的无偏估计;如果 μ \mu μ未知,求 k 2 k_2 k2使 σ ^ 2 = k 2 ∑ i = 1 n ∣ X i − μ ∣ \hat{\sigma}_2=k_2\sum\limits_{i=1}^n|X_i-\mu| σ^2=k2i=1nXiμ σ \sigma σ的无偏估计。

   k i k_i ki应使 E ( σ ^ i ) = σ E(\hat{\sigma}_i)=\sigma E(σ^i)=σ,为计算 E ( σ ^ i ) E(\hat{\sigma}_i) E(σ^i),需先求出 X i − μ X_i-\mu Xiμ X i − X ‾ X_i-\overline{X} XiX的分布。
  已知 X i ∼ N ( μ , σ 2 ) X_i\sim N(\mu,\sigma^2) XiN(μ,σ2),故
X i − μ ∼ N ( 0 , σ 2 ) , E ( ∣ X i − μ ∣ ) = ∫ − ∞ + ∞ ∣ x ∣ ⋅ 1 2 π σ e − 1 2 ( x σ ) 2 d x = 2 2 π σ ∫ 0 + ∞ x e − 1 2 ( x σ ) 2 d x = 2 π [ − σ e − 1 2 ( x σ ) 2 ] ∣ 0 + ∞ = 2 π σ , X_i-\mu\sim N(0,\sigma^2),\\ \begin{aligned} E(|X_i-\mu|)&=\displaystyle\int^{+\infty}_{-\infty}|x|\cdot\cfrac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}\mathrm{d}x=\cfrac{2}{\sqrt{2\pi}\sigma}\displaystyle\int^{+\infty}_0xe^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}\mathrm{d}x\\ &=\sqrt{\cfrac{2}{\pi}}\left[-\sigma e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}\right]\biggm\vert^{+\infty}_0=\cfrac{2}{\pi}\sigma, \end{aligned} XiμN(0,σ2),E(Xiμ)=+x2π σ1e21(σx)2dx=2π σ20+xe21(σx)2dx=π2 [σe21(σx)2]0+=π2σ,
  所以 E ( σ ^ 1 ) = k 1 ∑ i = 1 n E ( ∣ X i − μ ∣ ) = k 1 n 2 π σ E(\hat{\sigma}_1)=k_1\sum\limits_{i=1}^nE(|X_i-\mu|)=k_1n\sqrt{\cfrac{2}{\pi}}\sigma E(σ^1)=k1i=1nE(Xiμ)=k1nπ2 σ,因此当 k 1 = 1 n 2 π k_1=\cfrac{1}{n}\sqrt{\cfrac{2}{\pi}} k1=n1π2 时, σ ^ 1 = 1 n 2 π ∑ i = 1 n ∣ X i − μ ∣ \hat{\sigma}_1=\cfrac{1}{n}\sqrt{\cfrac{2}{\pi}}\sum\limits_{i=1}^n|X_i-\mu| σ^1=n1π2 i=1nXiμ σ \sigma σ的无偏估计。
  由于 X i ∼ N ( μ , σ 2 ) X_i\sim N(\mu,\sigma^2) XiN(μ,σ2)且相互独立,所以
X i − X ‾ = ( 1 − 1 n ) X i − 1 n ∑ j ≠ i X j ∼ N ( 0 , n − 1 n σ 2 ) = 记 N ( 0 , σ 1 2 ) . X_i-\overline{X}=\left(1-\cfrac{1}{n}\right)X_i-\cfrac{1}{n}\sum\limits_{j\ne i}X_j\sim N\left(0,\cfrac{n-1}{n}\sigma^2\right)\xlongequal{\text{记}}N(0,\sigma_1^2). XiX=(1n1)Xin1j=iXjN(0,nn1σ2) N(0,σ12).
  其中 σ 1 2 = n − 1 n σ 2 \sigma_1^2=\cfrac{n-1}{n}\sigma^2 σ12=nn1σ2。由上面计算知 E ( ∣ X i − X ‾ ∣ ) = 2 π σ 1 = 2 ( n − 1 ) n π σ E(|X_i-\overline{X}|)=\sqrt{\cfrac{2}{\pi}}\sigma_1=\sqrt{\cfrac{2(n-1)}{n\pi}}\sigma E(XiX)=π2 σ1=nπ2(n1) σ,所以
E ( σ ^ 2 ) = k 2 ∑ i = 1 n E ( ∣ X i − X ‾ ∣ ) = k 2 n 2 ( n − 1 ) n π σ = k 2 2 n ( n − 1 ) π σ , E(\hat{\sigma}_2)=k_2\sum\limits_{i=1}^nE(|X_i-\overline{X}|)=k_2n\sqrt{\cfrac{2(n-1)}{n\pi}}\sigma=k_2\sqrt{\cfrac{2n(n-1)}{\pi}}\sigma, E(σ^2)=k2i=1nE(XiX)=k2nnπ2(n1) σ=k2π2n(n1) σ,
  因此当 k 2 = π 2 n ( n − 1 ) k_2=\sqrt{\cfrac{\pi}{2n(n-1)}} k2=2n(n1)π 时, σ ^ 2 = π 2 n ( n − 1 ) ∑ i = 1 n ∣ X i − X ‾ ∣ \hat{\sigma}_2=\sqrt{\cfrac{\pi}{2n(n-1)}}\sum\limits_{i=1}^n|X_i-\overline{X}| σ^2=2n(n1)π i=1nXiX为的无偏估计。(这道题主要利用了无偏估计的定义求解

新版习题九

例9.9

在这里插入图片描述

在这里插入图片描述

例9.14

在这里插入图片描述

新版习题九

9.2

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值