张宇1000题线性代数 第四章 矩阵的秩

目录

A A A

5.设 A \bm{A} A n n n阶方阵, A ∗ \bm{A}^* A为其伴随矩阵,证明:若 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,则 r ( A ∗ ) = r(\bm{A}^*)= r(A)=______。

  由题设, r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,知 ∣ A ∣ = 0 |\bm{A}|=0 A=0,从而有 A A ∗ = ∣ A ∣ E = O \bm{AA}^*=|\bm{A}|\bm{E}=\bm{O} AA=AE=O,得 r ( A ) + r ( A ∗ ) ⩽ n r(\bm{A})+r(\bm{A}^*)\leqslant n r(A)+r(A)n,即有 r ( A ∗ ) ⩽ n − r ( A ) = n − ( n − 1 ) = 1 r(\bm{A}^*)\leqslant n-r(\bm{A})=n-(n-1)=1 r(A)nr(A)=n(n1)=1,又因 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,知 A \bm{A} A中至少有一个 n − 1 n-1 n1阶子式不为零,也即至少有一个代数余子式不为零,从而知 A ∗ \bm{A}^* A非零,因此同时有 r ( A ∗ ) ⩾ 1 r(\bm{A}^*)\geqslant1 r(A)1
  综上讨论,即证 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1。(这道题主要利用了矩阵的秩的性质求解

B B B

4.设 A = ( a i j ) n × n \bm{A}=(a_{ij})_{n\times n} A=(aij)n×n,且 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯   , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1naij=0,i=1,2,,n,求 r ( A ∗ ) r(\bm{A}^*) r(A) A ∗ \bm{A}^* A的表示形式。

  由 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯   , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1naij=0,i=1,2,,n,可知 ∣ A ∣ = 0 , r ( A ) ⩽ n − 1 |\bm{A}|=0,r(\bm{A})\leqslant n-1 A=0,r(A)n1,当 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1时,有 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1,当 r ( A ) < n − 1 r(\bm{A})<n-1 r(A)<n1时, r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A)=0,故有 r ( A ∗ ) ⩽ 1 r(\bm{A}^*)\leqslant1 r(A)1
  当 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1时, A ∗ = α β T \bm{A}^*=\bm{\alpha\beta}^\mathrm{T} A=αβT,其中 α , β \bm{\alpha},\bm{\beta} α,β为任意非零列向量;当 r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A)=0时, A ∗ = O \bm{A}^*=\bm{O}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值