目录
- A A A组
- B B B组
- C C C组
-
- 3.设 A , B \bm{A},\bm{B} A,B都是 3 3 3阶矩阵,其中 A = [ 1 2 1 3 4 a 1 2 2 ] , A B − A + B = E \bm{A}=\begin{bmatrix}1&2&1\\3&4&a\\1&2&2\end{bmatrix},\bm{AB}-\bm{A}+\bm{B}=\bm{E} A=⎣⎡1312421a2⎦⎤,AB−A+B=E,且 B ≠ E \bm{B}\ne\bm{E} B=E,则常数 a = a= a=( )。
( A ) 7 2 ; (A)\cfrac{7}{2}; (A)27;
( B ) 7 ; (B)7; (B)7;
( C ) 13 2 ; (C)\cfrac{13}{2}; (C)213;
( D ) 13. (D)13. (D)13. - 5.设有两个 n n n维非零列向量 α = [ a 1 , a 2 , ⋯ , a n ] T , β = [ b 1 , b 2 , ⋯ , b n ] T \bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T},\bm{\beta}=[b_1,b_2,\cdots,b_n]^\mathrm{T} α=[a1,a2,⋯,an]T,β=[b1,b2,⋯,bn]T。
-
- (1)计算 α β T \bm{\alpha\beta}^\mathrm{T} αβT与 α T β \bm{\alpha}^\mathrm{T}\bm{\beta} αTβ;
- (2)求矩阵 α β T \bm{\alpha\beta}^\mathrm{T} αβT的秩 r ( α β T ) r(\bm{\alpha\beta}^\mathrm{T}) r(αβT);
- (3)设 C = E − α β T \bm{C}=\bm{E}-\bm{\alpha\beta}^\mathrm{T} C=E−αβT,其中 E \bm{E} E为 n n n阶单位矩阵。证明: C T C = E − β α T − α β T + β β T \bm{C}^\mathrm{T}\bm{C}=\bm{E}-\bm{\beta\alpha}^\mathrm{T}-\bm{\alpha\beta}^\mathrm{T}+\bm{\beta\beta}^\mathrm{T} CTC=E−βαT−αβT+ββT的充要条件是 α T α = 1 \bm{\alpha}^\mathrm{T}\bm{\alpha}=1 αTα=1。
- 3.设 A , B \bm{A},\bm{B} A,B都是 3 3 3阶矩阵,其中 A = [ 1 2 1 3 4 a 1 2 2 ] , A B − A + B = E \bm{A}=\begin{bmatrix}1&2&1\\3&4&a\\1&2&2\end{bmatrix},\bm{AB}-\bm{A}+\bm{B}=\bm{E} A=⎣⎡1312421a2⎦⎤,AB−A+B=E,且 B ≠ E \bm{B}\ne\bm{E} B=E,则常数 a = a= a=( )。
- 写在最后
A A A组
5.设 A \bm{A} A为 n n n阶方阵, A ∗ \bm{A}^* A∗为其伴随矩阵,证明:若 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n−1,则 r ( A ∗ ) = r(\bm{A}^*)= r(A∗)=______。
解 由题设, r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n−1,知 ∣ A ∣ = 0 |\bm{A}|=0 ∣A∣=0,从而有 A A ∗ = ∣ A ∣ E = O \bm{AA}^*=|\bm{A}|\bm{E}=\bm{O} AA∗=∣A∣E=O,得 r ( A ) + r ( A ∗ ) ⩽ n r(\bm{A})+r(\bm{A}^*)\leqslant n r(A)+r(A∗)⩽n,即有 r ( A ∗ ) ⩽ n − r ( A ) = n − ( n − 1 ) = 1 r(\bm{A}^*)\leqslant n-r(\bm{A})=n-(n-1)=1 r(A∗)⩽n−r(A)=n−(n−1)=1,又因 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n−1,知 A \bm{A} A中至少有一个 n − 1 n-1 n−1阶子式不为零,也即至少有一个代数余子式不为零,从而知 A ∗ \bm{A}^* A∗非零,因此同时有 r ( A ∗ ) ⩾ 1 r(\bm{A}^*)\geqslant1 r(A∗)⩾1。
综上讨论,即证 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A∗)=1。(这道题主要利用了矩阵的秩的性质求解)
B B B组
4.设 A = ( a i j ) n × n \bm{A}=(a_{ij})_{n\times n} A=(aij)n×n,且 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯ , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1∑naij=0,i=1,2,⋯,n,求 r ( A ∗ ) r(\bm{A}^*) r(A∗)及 A ∗ \bm{A}^* A∗的表示形式。
解 由 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯ , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1∑naij=0,i=1,2,⋯,n,可知 ∣ A ∣ = 0 , r ( A ) ⩽ n − 1 |\bm{A}|=0,r(\bm{A})\leqslant n-1 ∣A∣=0,r(A)⩽n−1,当 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n−1时,有 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A∗)=1,当 r ( A ) < n − 1 r(\bm{A})<n-1 r(A)<n−1时, r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A∗)=0,故有 r ( A ∗ ) ⩽ 1 r(\bm{A}^*)\leqslant1 r(A∗)⩽1。
当 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A∗)=1时, A ∗ = α β T \bm{A}^*=\bm{\alpha\beta}^\mathrm{T} A∗=αβT,其中 α , β \bm{\alpha},\bm{\beta} α,β为任意非零列向量;当 r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A∗)=0时, A ∗ = O \bm{A}^*=\bm{O}