张宇1000题线性代数 第四章 矩阵的秩

目录

A A A

5.设 A \bm{A} A n n n阶方阵, A ∗ \bm{A}^* A为其伴随矩阵,证明:若 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,则 r ( A ∗ ) = r(\bm{A}^*)= r(A)=______。

  由题设, r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,知 ∣ A ∣ = 0 |\bm{A}|=0 A=0,从而有 A A ∗ = ∣ A ∣ E = O \bm{AA}^*=|\bm{A}|\bm{E}=\bm{O} AA=AE=O,得 r ( A ) + r ( A ∗ ) ⩽ n r(\bm{A})+r(\bm{A}^*)\leqslant n r(A)+r(A)n,即有 r ( A ∗ ) ⩽ n − r ( A ) = n − ( n − 1 ) = 1 r(\bm{A}^*)\leqslant n-r(\bm{A})=n-(n-1)=1 r(A)nr(A)=n(n1)=1,又因 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1,知 A \bm{A} A中至少有一个 n − 1 n-1 n1阶子式不为零,也即至少有一个代数余子式不为零,从而知 A ∗ \bm{A}^* A非零,因此同时有 r ( A ∗ ) ⩾ 1 r(\bm{A}^*)\geqslant1 r(A)1
  综上讨论,即证 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1。(这道题主要利用了矩阵的秩的性质求解

B B B

4.设 A = ( a i j ) n × n \bm{A}=(a_{ij})_{n\times n} A=(aij)n×n,且 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯   , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1naij=0,i=1,2,,n,求 r ( A ∗ ) r(\bm{A}^*) r(A) A ∗ \bm{A}^* A的表示形式。

  由 ∑ j = 1 n a i j = 0 , i = 1 , 2 , ⋯   , n \displaystyle\sum\limits_{j=1}^na_{ij}=0,i=1,2,\cdots,n j=1naij=0,i=1,2,,n,可知 ∣ A ∣ = 0 , r ( A ) ⩽ n − 1 |\bm{A}|=0,r(\bm{A})\leqslant n-1 A=0,r(A)n1,当 r ( A ) = n − 1 r(\bm{A})=n-1 r(A)=n1时,有 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1,当 r ( A ) < n − 1 r(\bm{A})<n-1 r(A)<n1时, r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A)=0,故有 r ( A ∗ ) ⩽ 1 r(\bm{A}^*)\leqslant1 r(A)1
  当 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1时, A ∗ = α β T \bm{A}^*=\bm{\alpha\beta}^\mathrm{T} A=αβT,其中 α , β \bm{\alpha},\bm{\beta} α,β为任意非零列向量;当 r ( A ∗ ) = 0 r(\bm{A}^*)=0 r(A)=0时, A ∗ = O \bm{A}^*=\bm{O} A=O。(这道题主要利用了分类讨论求解

C C C

3.设 A , B \bm{A},\bm{B} A,B都是 3 3 3阶矩阵,其中 A = [ 1 2 1 3 4 a 1 2 2 ] , A B − A + B = E \bm{A}=\begin{bmatrix}1&2&1\\3&4&a\\1&2&2\end{bmatrix},\bm{AB}-\bm{A}+\bm{B}=\bm{E} A=1312421a2,ABA+B=E,且 B ≠ E \bm{B}\ne\bm{E} B=E,则常数 a = a= a=(  )。
( A ) 7 2 ; (A)\cfrac{7}{2}; (A)27;
( B ) 7 ; (B)7; (B)7;
( C ) 13 2 ; (C)\cfrac{13}{2}; (C)213;
( D ) 13. (D)13. (D)13.

  由 A B − A + B = E \bm{AB}-\bm{A}+\bm{B}=\bm{E} ABA+B=E,有 ( A + E ) ( B − E ) = O (\bm{A}+\bm{E})(\bm{B}-\bm{E})=\bm{O} (A+E)(BE)=O,于是 r ( A + E ) + r ( B − E ) ⩽ 3 r(\bm{A}+\bm{E})+r(\bm{B}-\bm{E})\leqslant3 r(A+E)+r(BE)3,又 3 = r ( A + B ) = r [ ( A + E ) + ( B − E ) ] ⩽ r ( A + E ) + r ( B − E ) 3=r(\bm{A}+\bm{B})=r[(\bm{A}+\bm{E})+(\bm{B}-\bm{E})]\leqslant r(\bm{A}+\bm{E})+r(\bm{B}-\bm{E}) 3=r(A+B)=r[(A+E)+(BE)]r(A+E)+r(BE),故 r ( A + E ) + r ( B − E ) = 3 r(\bm{A}+\bm{E})+r(\bm{B}-\bm{E})=3 r(A+E)+r(BE)=3
  由 r ( A + E ) = r ( [ 2 2 1 3 5 a 1 2 3 ] ) ⩾ 2 , r ( B − E ) ⩾ 1 r(\bm{A}+\bm{E})=r\left(\begin{bmatrix}2&2&1\\3&5&a\\1&2&3\end{bmatrix}\right)\geqslant2,r(\bm{B}-\bm{E})\geqslant1 r(A+E)=r2312521a32,r(BE)1,故 r ( A + E ) = 2 r(\bm{A}+\bm{E})=2 r(A+E)=2,于是 ∣ A + E ∣ = ∣ 2 2 1 3 5 a 1 2 3 ∣ = 13 − 2 a = 0 |\bm{A}+\bm{E}|=\begin{vmatrix}2&2&1\\3&5&a\\1&2&3\end{vmatrix}=13-2a=0 A+E=2312521a3=132a=0,得 a = 13 2 a=\cfrac{13}{2} a=213。(这道题主要利用了等式变换求解

5.设有两个 n n n维非零列向量 α = [ a 1 , a 2 , ⋯   , a n ] T , β = [ b 1 , b 2 , ⋯   , b n ] T \bm{\alpha}=[a_1,a_2,\cdots,a_n]^\mathrm{T},\bm{\beta}=[b_1,b_2,\cdots,b_n]^\mathrm{T} α=[a1,a2,,an]T,β=[b1,b2,,bn]T

(1)计算 α β T \bm{\alpha\beta}^\mathrm{T} αβT α T β \bm{\alpha}^\mathrm{T}\bm{\beta} αTβ

   α β T = [ a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋮ a n b 1 a n b 2 ⋯ a n b n ] , α T β = a 1 b 1 + a 2 b 2 + ⋯ + a n b n . \bm{\alpha\beta}^\mathrm{T}=\begin{bmatrix}a_1b_1&a_1b_2&\cdots&a_1b_n\\a_2b_1&a_2b_2&\cdots&a_2b_n\\\vdots&\vdots&&\vdots\\a_nb_1&a_nb_2&\cdots&a_nb_n\end{bmatrix},\bm{\alpha}^\mathrm{T}\bm{\beta}=a_1b_1+a_2b_2+\cdots+a_nb_n. αβT=a1b1a2b1anb1a1b2a2b2anb2a1bna2bnanbn,αTβ=a1b1+a2b2++anbn.

(2)求矩阵 α β T \bm{\alpha\beta}^\mathrm{T} αβT的秩 r ( α β T ) r(\bm{\alpha\beta}^\mathrm{T}) r(αβT)

  因 α β T \bm{\alpha\beta}^\mathrm{T} αβT各行(列)是第 1 1 1行(列)的倍数,又 α , β \bm{\alpha},\bm{\beta} α,β皆为非零向量,故 r ( α β T ) = 1 r(\bm{\alpha\beta}^\mathrm{T})=1 r(αβT)=1

(3)设 C = E − α β T \bm{C}=\bm{E}-\bm{\alpha\beta}^\mathrm{T} C=EαβT,其中 E \bm{E} E n n n阶单位矩阵。证明: C T C = E − β α T − α β T + β β T \bm{C}^\mathrm{T}\bm{C}=\bm{E}-\bm{\beta\alpha}^\mathrm{T}-\bm{\alpha\beta}^\mathrm{T}+\bm{\beta\beta}^\mathrm{T} CTC=EβαTαβT+ββT的充要条件是 α T α = 1 \bm{\alpha}^\mathrm{T}\bm{\alpha}=1 αTα=1

  由于 C T C = ( E − α β T ) T ( E − α β T ) = ( E − β α T ) ( E − α β T ) = E − β α T − α β T + β α T α β T \bm{C}^\mathrm{T}\bm{C}=(\bm{E}-\bm{\alpha\beta}^\mathrm{T})^\mathrm{T}(\bm{E}-\bm{\alpha\beta}^\mathrm{T})=(\bm{E}-\bm{\beta\alpha}^\mathrm{T})(\bm{E}-\bm{\alpha\beta}^\mathrm{T})=\bm{E}-\bm{\beta\alpha}^\mathrm{T}-\bm{\alpha\beta}^\mathrm{T}+\bm{\beta\alpha}^\mathrm{T}\bm{\alpha\beta}^\mathrm{T} CTC=(EαβT)T(EαβT)=(EβαT)(EαβT)=EβαTαβT+βαTαβT,故若要求 C T C = E − β α T − α β T + β β T \bm{C}^\mathrm{T}\bm{C}=\bm{E}-\bm{\beta\alpha}^\mathrm{T}-\bm{\alpha\beta}^\mathrm{T}+\bm{\beta\beta}^\mathrm{T} CTC=EβαTαβT+ββT,则 β α T α β T − β β T = O , β ( α T α − 1 ) β T = O \bm{\beta\alpha}^\mathrm{T}\bm{\alpha\beta}^\mathrm{T}-\bm{\beta\beta}^\mathrm{T}=\bm{O},\bm{\beta}(\bm{\alpha}^\mathrm{T}\bm{\alpha}-1)\bm{\beta}^\mathrm{T}=\bm{O} βαTαβTββT=O,β(αTα1)βT=O,即 ( α T α − 1 ) β β T = O (\bm{\alpha}^\mathrm{T}\bm{\alpha}-1)\bm{\beta\beta}^\mathrm{T}=\bm{O} (αTα1)ββT=O
  因为 β ≠ 0 \bm{\beta}\ne\bm{0} β=0,所以 β β T ≠ O \bm{\beta\beta}^\mathrm{T}\ne\bm{O} ββT=O。故 C T C = E − β α T − α β T + β β T \bm{C}^\mathrm{T}\bm{C}=\bm{E}-\bm{\beta\alpha}^\mathrm{T}-\bm{\alpha\beta}^\mathrm{T}+\bm{\beta\beta}^\mathrm{T} CTC=EβαTαβT+ββT的充要条件是 α T α = 1 \bm{\alpha}^\mathrm{T}\bm{\alpha}=1 αTα=1。(这道题主要利用了等式变换求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值